The present work used a near-infrared methane cavity ring-down spectroscopy (CRDS) sensor to examine performance and limitations of open-path CRDS for atmospheric measurements. A simple purge-enclosure was developed to maintain high mirror reflectivity and allowed >100 hours of operation with mirror reflectivity above 0.99996. We characterized effects of aerosols on ring-down decay signals and found the dominant effect to be fluctuations by large super-micron particles. Simple software filtering approaches were developed to combat these fluctuations allowing noise-equivalent sensitivity of ~6x10 cmHJ Hz within a factor of ~3 of closed-path systems (based on stability of the absorption baseline). Sensor measurements were validated against known methane concentrations in a closed-path configuration, while open-path validation was performed by side-by-side comparison with a commercial closed-path system.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.005523DOI Listing

Publication Analysis

Top Keywords

cavity ring-down
8
ring-down spectroscopy
8
mirror reflectivity
8
open-path cavity
4
spectroscopy trace
4
trace gas
4
gas measurements
4
measurements ambient
4
ambient air
4
air work
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!