The electric-optical property of the proton exchanged phase modulator in an x-cut single-crystal lithium niobate thin film was studied. Proton exchanged waveguides generally suffered from a deteriorated electric-optical coefficient. By introducing a shallow proton exchange layer (thickness = 0.165 μm), most energy of the optical mode was allowed to guide in the untouched single-crystal lithium niobate film, making contribution to the effective electric-optical coefficient as high as 29.5 pm/V, which was very close to that of the bulk lithium niobate (r = 31 pm/V). A 12 V voltage applied to the electrodes located on the two sides of the waveguide induced a 0.097 nm shift of the Fabry-Perot resonant peak. Considering the wavelength difference of the neighboring resonant peaks (0.228 nm) and the length of the electrodes (2.3 mm), the voltage-length product was as low as 6.5 V·cm, indicating the efficient electric-optical modulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.004640 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!