Stacks of intrinsic Josephson junctions in BiSrCaCuO emit intense and coherent terahertz waves determined by the internal electromagnetic cavity resonance. We identify the excited transverse magnetic mode by observing the broadly tunable emissions from a nearly square stack and simulating the scattering spectrum. We employ a wedge-type interferometer to measure spatially-integrated power independently of the far-field pattern. The simulation results are in good agreement with observed resonance behaviors as a function of frequency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.004591 | DOI Listing |
Nano Lett
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.
Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Physics, IQIM, California Institute of Technology, Pasadena, California 91125, USA.
External coherent fields can drive quantum materials into nonequilibrium states, revealing exotic properties that are unattainable under equilibrium conditions-an approach known as "Floquet engineering." While optical lasers have commonly been used as the driving fields, recent advancements have introduced nontraditional sources, such as coherent phonon drives. Building on this progress, we demonstrate that driving a metallic quantum nanowire with a coherent wave of terahertz phonons can induce an electronic steady state characterized by a persistent quantized current along the wire.
View Article and Find Full Text PDFOrganic-crystal-based optical terahertz (THz) sources and detectors are powerful tools for THz spectroscopy, owing to the wide frequency tunability. A drawback of this technique lies in the inherent absorption peaks of nonlinear crystals, leaving several gaps in the spectral coverage. As an alternative type of organic crystal, hydrogen-bonded OH1 is promising to complement the existing gaps.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
In this decade, one of the major trends in the pharmaceutical industry is the adoption of continuous manufacturing. This requires the development of continuous equivalents of essential pharmaceutical processes such as film coating. The process of film coating is the last step of the processing of solid dosage forms and is critical because it determines the visual appearance of the end product, along with ensuring its stability and possibly even defining the rate of drug release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!