AI Article Synopsis

Article Abstract

The imaging properties of BaTiO glass (BTG) microspheres in the diameter range of 5-50 µm which are fully immersed in a polydimethylsiloxane layer are experimentally studied. Our experimental results show that for both Blu-ray disc samples and the single-layer hexagonally close-packed microsphere array samples, with the increase of the diameter of BTG microspheres, the range of focal image positions (RFIP) increases linearly. When the diameter of BTG microspheres increases from 5 to 50 μm, the RFIP changes from 4 to 25 μm. For the microsphere array samples, Talbot effect is observed, and both the position of Talbot images and the Talbot distance depend on the diameter of BTG microspheres. Numerical simulations indicate that the length of the photonic nanojet changes from 2.9 to 7.1 μm when the BTG microsphere size increases from 5 to 50 μm, and the calculated RFIP is between 6 and 24 μm. The calculated RFIPs match well with the experimental ones. Our researches reveal that the RFIP depends on the length of the photonic nanojet of the BTG microsphere.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.027551DOI Listing

Publication Analysis

Top Keywords

btg microspheres
16
photonic nanojet
12
diameter btg
12
microsphere array
8
array samples
8
increases μm
8
changes μm
8
length photonic
8
btg microsphere
8
μm calculated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!