The chimpanzee is arguably the most important species for the study of human origins. A key resource for these studies is a high-quality reference genome assembly; however, as with most mammalian genomes, the current iteration of the chimpanzee reference genome assembly is highly fragmented. In the current iteration of the chimpanzee reference genome assembly (Pan_tro_2.1.4), the sequence is scattered across more then 183 000 contigs, incorporating more than 159 000 gaps, with a genome-wide contig N50 of 51 Kbp. In this work, we produce an extensive and diverse array of sequencing datasets to rapidly assemble a new chimpanzee reference that surpasses previous iterations in bases represented and organized in large scaffolds. To this end, we show substantial improvements over the current release of the chimpanzee genome (Pan_tro_2.1.4) by several metrics, such as increased contiguity by >750% and 300% on contigs and scaffolds, respectively, and closure of 77% of gaps in the Pan_tro_2.1.4 assembly gaps spanning >850 Kbp of the novel coding sequence based on RNASeq data. We further report more than 2700 genes that had putatively erroneous frame-shift predictions to human in Pan_tro_2.1.4 and show a substantial increase in the annotation of repetitive elements. We apply a simple 3-way hybrid approach to considerably improve the reference genome assembly for the chimpanzee, providing a valuable resource for the study of human origins. Furthermore, we produce extensive sequencing datasets that are all derived from the same cell line, generating a broad non-human benchmark dataset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714192PMC
http://dx.doi.org/10.1093/gigascience/gix098DOI Listing

Publication Analysis

Top Keywords

reference genome
20
chimpanzee reference
16
genome assembly
16
3-way hybrid
8
hybrid approach
8
study human
8
human origins
8
current iteration
8
iteration chimpanzee
8
produce extensive
8

Similar Publications

Genome-wide association mapping of bruchid resistance loci in soybean.

PLoS One

January 2025

Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.

Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality.

View Article and Find Full Text PDF

Background: Determining the complete genome sequence data of adenoviruses has recently become greatly important due to their use by scientists as vectors in cancer studies and other fields, including vaccine development. However, the GenBank database currently has few complete genome sequences of adenoviruses, which are known for their large genomes. To address this gap, we analysed next-generation sequencing data obtained from our previous study to provide the complete genome sequence of the canine adenovirus-2 strain.

View Article and Find Full Text PDF

Distinct Virulence Mechanisms of in Onion Foliar and Bulb Scale Tissues.

Mol Plant Microbe Interact

January 2025

Univ of Georgia, Plant Pathology, 3303 Miller Plant Sciences, Athens, United States, 30602;

Slippery skin of onion caused by pv. (Bga) is a common bacterial disease reported from onion growing regions around the world. Despite the increasing attention in recent years, our understanding of the virulence mechanisms of this pathogen remains limited.

View Article and Find Full Text PDF

Human noroviruses are the leading cause of non-bacterial shellfish-associated gastroenteritis. In 2022, a multi-jurisdictional norovirus outbreak associated with contaminated oysters occurred that involved hundreds of illnesses. Here, we conducted genetic analysis on 30 clinical samples associated with this oyster outbreak.

View Article and Find Full Text PDF

Closed genomes of commercial inoculant rhizobia provide a blueprint for management of legume inoculation.

Appl Environ Microbiol

January 2025

Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.

Unlabelled: Rhizobia are soil bacteria capable of establishing symbiosis within legume root nodules, where they reduce atmospheric N into ammonia and supply it to the plant for growth. Australian soils often lack rhizobia compatible with introduced agricultural legumes, so inoculation with exotic strains has become a common practice for over 50 years. While extensive research has assessed the N-fixing capabilities of these inoculants, their genomics, taxonomy, and core and accessory gene phylogeny are poorly characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!