The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recorded by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.56.008385DOI Listing

Publication Analysis

Top Keywords

liquid boundary
12
fuel spray
12
rainbow schlieren
8
schlieren deflectometry
8
high-pressure fuel
8
fuel
6
quantifying liquid
4
boundary vapor
4
vapor distributions
4
distributions fuel
4

Similar Publications

Study on the mechanism of erosion and wear of elbow pipes by coarse particles in filling slurry.

Sci Rep

December 2024

The Ministry of Education Key Laboratory of High Efficiency Mining and Safety for Metal Mines & School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.

Coarse particles in filling slurry are the primary factor causing wear in filling elbow pipes, and the wear mechanism of these particles on the pipes is influenced by various factors. To study the erosion and wear mechanism of elbow pipes caused by coarse particles, the motion state of coarse particles under different curvature radii, coarse particle gradations, and pipe diameters was investigated using a simulation method based on the coupling of Fluent and EDEM software, grounded in theories of fluid mechanics, rheology, and solid-liquid two-phase flow. The study explored the impact patterns and locations of wear induced by coarse particles on filling elbow pipes.

View Article and Find Full Text PDF

Focal Cortical Dysplasia (FCD) & Mesial Temporal Lobe Epilepsy-Hippocampal Sclerosis (MTLE-HS) are two common pathologies of drug-resistant focal epilepsy (DRE). Inappropriate localization of the epileptogenic zones (EZs) in FCD is a significant contributing factor to the unsatisfactory surgical results observed in FCD cases. Currently, no molecular or cellular indicators are available which can aid in identifying the epileptogenic zones (EZs) in FCD.

View Article and Find Full Text PDF

The gas-liquid-solid interface plays a crucial role in various electrochemical energy conversion devices, including fuel cells and electrolyzers. Understanding the effect of gas transfer on the electrochemistry at this three-phase interface is a grand challenge. Scanning electrochemical cell microscopy (SECCM) is an emerging technique for mapping the heterogeneity in electrochemical activity; it also inherently features a three-phase boundary at the nanodroplet cell.

View Article and Find Full Text PDF

Lattice-based mean-field models of ionic liquids neglect charge discreteness and ion correlations. To address these limitations, we propose separating the short-range and long-range parts of the electrostatic interaction by truncating the Coulomb potential below a fixed distance that is equal to or slightly larger than that between neighboring ions. Interactions and correlations between adjacent ions can then be modeled explicitly, whereas longer-ranged electrostatic interactions are captured on the mean-field level.

View Article and Find Full Text PDF

Majorana quasiparticles and topological phases in 3D active nematics.

Proc Natl Acad Sci U S A

December 2024

School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.

Quasiparticles are low-energy excitations with important roles in condensed matter physics. An intriguing example is provided by Majorana quasiparticles, which are equivalent to their antiparticles. Despite being implicated in neutrino oscillations and topological superconductivity, their experimental realizations remain very rare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!