Plexins (Plxns) are semaphorin (Sema) receptors that play important signaling roles, particularly in the developing nervous system and vasculature. Sema-Plxn signaling regulates cellular processes such as cytoskeletal dynamics, proliferation, and differentiation. However, the receptor-proximal signaling mechanisms driving Sema-Plxn signal transduction are only partially understood. Plxn tyrosine phosphorylation is thought to play an important role in these signaling events as receptor and nonreceptor tyrosine kinases have been shown to interact with Plxn receptors. The Src family kinase Fyn can induce the tyrosine phosphorylation of PlxnA1 and PlxnA2. However, the Fyn-dependent phosphorylation sites on these receptors have not been identified. Here, using mass spectrometry-based approaches, we have identified highly conserved, Fyn-induced PlexinA (PlxnA) tyrosine phosphorylation sites. Mutation of these sites to phenylalanine results in significantly decreased Fyn-dependent PlxnA tyrosine phosphorylation. Furthermore, in contrast to wild-type human PLXNA2 mRNA, mRNA harboring these point mutations cannot rescue eye developmental defects when coinjected with a plxnA2 morpholino in zebrafish embryos. Together these data suggest that Fyn-dependent phosphorylation at two critical tyrosines is a key feature of vertebrate PlxnA1 and PlxnA2 signal transduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760361 | PMC |
http://dx.doi.org/10.1111/febs.14313 | DOI Listing |
Am J Cancer Res
December 2024
Department of Pharmacology and Toxicology, Medical College of Wisconsin Milwaukee, Wisconsin 53226, USA.
Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis.
View Article and Find Full Text PDFSTAT5B is a vital transcription factor for lymphocytes. Here, function of two STAT5B mutations from human T cell leukemias: one substituting tyrosine 665 with phenylalanine (STAT5B ), the other with histidine (STAT5B ) was interrogated. modeling predicted divergent energetic effects on homodimerization with a range of pathogenicity.
View Article and Find Full Text PDFUnlabelled: SHP1 (PTPN6) and SHP2 (PTPN11) are closely related protein-tyrosine phosphatases (PTPs), which are autoinhibited until their SH2 domains bind paired tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory/switch motifs (ITIMs/ITSMs). These PTPs bind overlapping sets of ITIM/ITSM-bearing proteins, suggesting that they might have some redundant functions. By studying T cell-specific single and double knockout mice, we found that SHP1 and SHP2 redundantly restrain naïve T cell differentiation to effector and central memory phenotypes, with SHP1 playing the dominant role.
View Article and Find Full Text PDFDiabetes Metab Syndr Obes
January 2025
Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
Purpose: Mitochondrial dysfunction mediated by c-Jun N-terminal kinase (JNK) plays an important role in lipotoxic liver injury in nonalcoholic steatohepatitis (NASH). This study aims to investigate the pharmacological mechanism of Jiangzhi Granule (JZG), a Chinese herbal formula against NASH, with a focus on its regulation of JNK signaling-mediated mitochondrial function.
Methods: Hepatocytes were induced by palmitic acid (PA) for 24 h to establish an in vitro lipotoxic model, which was simultaneously treated with either JZG or vehicle control.
Endocrinology
January 2025
Graduate Program in Cellular and Molecular Biology.
SH2B1β is a multifunctional scaffold protein that modulates cytoskeletal processes such as cellular motility and neurite outgrowth. To identify novel SH2B1β-interacting proteins involved in these processes, a yeast two-hybrid assay was performed. The C-terminal 159 residues of the cytoskeleton structural protein, βIIΣ1-spectrin, interacted with the N-terminal 260 residues of SH2B1β, a region implicated in SH2B1β enhancement of cell motility and localization at the plasma membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!