Background: Transmitted drug-resistance (TDR) remains a critical aspect for the management of HIV-1-infected individuals. Thus, studying the dynamics of TDR is crucial to optimize HIV care.

Methods: In total, 4323 HIV-1 protease/reverse-transcriptase sequences from drug-naive individuals diagnosed in north and central Italy between 2000 and 2014 were analysed. TDR was evaluated over time. Maximum-likelihood and Bayesian phylogenetic trees with bootstrap and Bayesian-probability supports defined transmission clusters.

Results: Most individuals were males (80.2%) and Italian (72.1%), with a median (IQR) age of 37 (30-45) years. MSM accounted for 42.2% of cases, followed by heterosexuals (36.4%). Non-B subtype infections accounted for 30.8% of the overall population and increased over time (<2005-14: 19.5%-38.5%, P < 0.0001), particularly among Italians (<2005-14: 6.5%-28.8%, P < 0.0001). TDR prevalence was 8.8% and increased over time in non-B subtypes (<2005-14: 2%-7.1%, P = 0.018). Overall, 467 transmission clusters (involving 1207 individuals; 27.9%) were identified. The prevalence of individuals grouping in transmission clusters increased over time in both B (<2005-14: 12.9%-33.5%, P = 0.001) and non-B subtypes (<2005-14: 18.4%-41.9%, P = 0.006). TDR transmission clusters were 13.3% within the overall cluster observed and dramatically increased in recent years (<2005-14: 14.3%-35.5%, P = 0.005). This recent increase was mainly due to non-B subtype-infected individuals, who were also more frequently involved in large transmission clusters than those infected with a B subtype [median number of individuals in transmission clusters: 7 (IQR 6-19) versus 4 (3-4), P = 0.047].

Conclusions: The epidemiology of HIV transmission changed greatly over time; the increasing number of transmission clusters (sometimes with drug resistance) shows that detection and proper treatment of the multi-transmitters is a major target for controlling HIV spread.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dkx231DOI Listing

Publication Analysis

Top Keywords

dynamics phylogenetic
4
phylogenetic relationships
4
relationships hiv-1
4
hiv-1 transmitted
4
transmitted drug
4
drug resistance
4
resistance subtype
4
subtype italy
4
italy years
4
years 2000-14
4

Similar Publications

Some unique asexual species persist over time and contradict the consensus that sex is a prerequisite for long-term evolutionary survival. How they escape the dead-end fate remains enigmatic. Here, we generated a haplotype-resolved genome assembly on the basis of a single individual and collected genomic data from worldwide populations of the parthenogenetic diploid oribatid mite to identify signatures of persistence without sex.

View Article and Find Full Text PDF

Thrips tabaci is the main thrips species affecting onion and related species. It is a cryptic species complex comprising three phylogenetic groups characterized by different reproductive modes (thelytoky or arrhenotoky) and host plant specialization. Thrips tabaci populations vary widely in genetic diversity, raising questions about the factor(s) that drive this diversity.

View Article and Find Full Text PDF

Mx proteins, first identified in mammals, encode potent antiviral activity against a wide range of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), which mediate critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. Despite their crucial role, the evolutionary origins of Mx proteins are poorly understood.

View Article and Find Full Text PDF

The evolution of eukaryotes is a fundamental event in the history of life. The closest prokaryotic lineage to eukaryotes, the Asgardarchaeota, encode proteins previously found only in eukaryotes, providing insight into their archaeal ancestor. Eukaryotic cells are characterized by endomembrane organelles, and the Arf family GTPases regulate organelle dynamics by recruiting effector proteins to membranes upon activation.

View Article and Find Full Text PDF

Background And Objective: Oral bacteria can translocate to the intestine, and their colonization efficiency is influenced by the gastrointestinal tract pH. Understanding how oral bacteria resist acidic environments is crucial for elucidating their role in gut health and disease.

Methods: To investigate the mechanisms of acid resistance in oral bacteria, an in vitro gastrointestinal tract Dynamic pH Model was established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!