Using small circular DNA molecules of different lengths as scaffolds, we successfully synthesised DNA nanotubes consisting of Mao's DNA tensegrity triangle tiles with four-arm junctions (Holliday junctions) at all vertices. Due to the intrinsic curvature of the triangle tile and the consecutive tile alignment, the 2D arrays are organised in the form of nanotubes. Two sized triangle tiles with equilateral side lengths of 1.5 and 2.5 full helical turns are connected by the sticky ended cohesion of a duplex with a length of 2.5 helical turns respectively, and their parallel lozenge tiling lattices were demonstrated by high resolution AFM images, where the former lozenge unit cell has a lattice constant of 13.6 nm, and the latter has a larger lattice constant of 17.0 nm. Modification of the triangle tile with infinitesimal disturbance on side lengths and insertion of one thymine single stranded loop at every vertex resulted in comparably similar nanotubes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr04869f | DOI Listing |
Nat Commun
January 2025
Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
Studying the self-assembly of chiral molecules in two dimensions offers insights into the fundamentals of crystallization. Using scanning tunneling microscopy, we examine an uncommon aggregation of polyaromatic chiral molecules on a silver surface. Dense packing is achieved through a chiral triangular tiling of triads, with N and N ± 1 molecules at the edges.
View Article and Find Full Text PDFPNAS Nexus
September 2024
Department of Morphology and Geometric Modeling, Budapest University of Technology and Economics, Budapest, 1111, Hungary.
A central problem of geometry is the tiling of space with simple structures. The classical solutions, such as triangles, squares, and hexagons in the plane and cubes and other polyhedra in three-dimensional space are built with sharp corners and flat faces. However, many tilings in Nature are characterized by shapes with curved edges, nonflat faces, and few, if any, sharp corners.
View Article and Find Full Text PDFBiotechnol Adv
November 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China. Electronic address:
Research on self-assembled deoxyribonucleic acid (DNA) nanostructures with different shapes, sizes, and functions has recently made rapid progress owing to its biocompatibility, programmability, and stability. Among these, triangular unit-based DNA nanostructures, which are typically multi-arm DNA tiles, have been widely applied because of their unique structural rigidity, spatial flexibility, and cell permeability. Triangular unit-based DNA nanostructures are folded from multiple single-stranded DNA using the principle of complementary base pairing.
View Article and Find Full Text PDFJ Chem Phys
July 2024
Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), C/ Jose Gutierrez Abascal 2, 28006 Madrid, Spain.
Through extensive Monte Carlo simulations, we systematically study the effect of chain stiffness on the packing ability of linear polymers composed of hard spheres in extremely confined monolayers, corresponding effectively to 2D films. First, we explore the limit of random close packing as a function of the equilibrium bending angle and then quantify the local and global order by the degree of crystallinity and the nematic or tetratic orientational order parameter, respectively. A multi-scale wealth of structural behavior is observed, which is inherently absent in the case of athermal individual monomers and is surprisingly richer than its 3D counterpart under bulk conditions.
View Article and Find Full Text PDFACS Nano
July 2024
Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States.
Recent advances enable the creation of nanoscale building blocks with complex geometries and interaction specificities for self-assembly. This nearly boundless design space necessitates design principles for defining the mutual interactions between multiple particle species to target a user-specified complex structure or pattern. In this article, we develop a symmetry-based method to generate the interaction matrices that specify the assembly of two-dimensional tilings, which we illustrate using equilateral triangles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!