Groundskeepers spend most of the year working outdoors, exposing them to heat and solar ultraviolet (UV) radiation and increasing their risk to related adverse health effects. Various studies on heat and UV exposures in different occupations have been published, but those on groundskeepers are rare. The purpose of this study was to assess the exposure to heat stress and solar UV radiation among groundskeepers in an eastern North Carolina university setting. Wet bulb globe temperature (WBGT) index using a heat stress monitor and UV effective irradiance (UV) index using a digital UV meter were recorded in various work areas three times a day (morning, noon, afternoon) and during three seasons (spring, summer, fall). Data analysis was conducted using descriptive statistics, analysis of variance (ANOVA), Tukey Honestly Significant Difference (HSD), and Pearson Correlation tests. The mean (±SD) WBGT index was the highest in the afternoon (25.4 ± 5.0°C), summer (27.8 ± 3.1°C), and July (29.0 ± 2.6°C); the mean UV index was the highest at noon, summer and June (0.0116 ± 0.0061, 0.0101 ± 0.0081, and 0.0114 ± 0.0089 mW/cm, respectively). Differences in the mean WBGT and UV indices within the time periods of day, seasons and months were significant (P < 0.01). The overall correlation between WBGT and UV indices was moderate (r = 0.42, P < 0.01) but lack of correlation was found during different times of the day during the fall and summer seasons. The largest percentages of WBGT indices exceeding the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit values (TLVs) for different workloads were found in the afternoon (11.3-40.7%), summer (14.6-56%), and July (28.8-76.3%). The mean UV for noon (0.0116 mW/cm) and afternoon (0.0100 mW/cm) exceeded the TLV for 30-min exposure. This study shows that groundskeepers are potentially exposed to excessive heat stress and UV radiation, and are at risk to developing heat- and UV-related illnesses. The study findings will be beneficial in implementing recommended control measures to prevent heat stress and UV exposure among groundskeepers and other similar outdoor workers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15459624.2017.1392530 | DOI Listing |
J Gen Virol
January 2025
Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands.
Nudiviruses (family ) are double-stranded DNA viruses that infect various insects and crustaceans. Among them, Heliothis zea nudivirus 1 (HzNV-1) represents the rare case of a lepidopteran nudivirus inducing a sexual pathology. Studies about molecular pathological dynamics of HzNV-1 or other nudiviruses are scarce.
View Article and Find Full Text PDFAmplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.
View Article and Find Full Text PDFIn addition to regulating the actin cytoskeleton, Cofilin also senses and responds to environmental stress. Cofilin can promote cell survival or death depending on context. Yet, many aspects of Cofilin's role in survival need clarification.
View Article and Find Full Text PDFThe nuclear pore complex (NPC), a multisubunit complex located within the nuclear envelope, regulates RNA export and the import and export of proteins. Here we address the role of the NPC in driving thermal stress-induced 3D genome repositioning of ( ) genes in yeast. We found that two nuclear basket proteins, Mlp1 and Nup2, although dispensable for NPC integrity, are required for driving genes into coalesced chromatin clusters, consistent with their strong, heat shock-dependent recruitment to gene regulatory and coding regions.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Seed and Plant Improvement Institute Agricultural Research, Education and Extension Organization (AREEO) Dezful Iran.
High temperatures can impede the growth and development of soybean plants, resulting in decreased yield and seed quality. Heat-induced damage can be mitigated by adjusting sowing date and selecting genotypes that are suitable for cultivation in hot climates. A 2-year (2017-2018) field experiment was conducted at Safiabad Agricultural and Natural Resources Research and Education Center, employing a split-plot design with three replications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!