Resistance to targeted therapy in cancer is often coupled with the acquisition of a pro-invasive phenotype by tumors cells and a highly permissive tumor microenvironment promoting drug resistance. Transcription factors are frequently shown as major points of convergence of multiple dysregulated receptors and signaling pathways in cancer. Several transcription factors are now incriminated as drivers of both drug resistance and invasiveness. We focused this review on critical transcription factors playing a causal role in both the resistance to BRAF V600E-targeted therapy and the pro-invasive behavior of melanoma cells. Simultaneous rewiring of pro-oncogenic signaling pathways, phenotype switching or phenotypic plasticity supporting pro-invasive/pro-metastatic behavior, actin remodeling, and bidirectional interactions between tumor microenvironment and melanoma cells represent major challenges for overcoming resistance to BRAF V600E inhibitors (BRAFi) and will be discussed. Although it represents an underdeveloped area of translational investigation, inhibition of transcription factors may open new avenues to combat resistance to BRAFi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pcmr.12666 | DOI Listing |
Lasers Med Sci
January 2025
Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
In this article, we aim to evaluate the effects of photobiomodulation on mitochondria quantity, biogenesis, and mitophagy-associated genes in breast cancer (BC) cells. Both models were irradiated with a low-power infrared laser (880 nm, 150 mW) and amber LED (617 nm, 1500 mW), alone or simultaneously. We evaluated the mRNA expression of PINK1 and PGC-1α genes, and the mitochondrial number was assessed based on the ratio of mitochondrial DNA/genomic DNA (mtDNA/gDNA).
View Article and Find Full Text PDFEMBO Rep
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs).
View Article and Find Full Text PDFGenes Genomics
January 2025
Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea.
Background: Soil salinity has been a serious threat to agricultural production worldwide, including soybeans. Glycine soja, the wild ancestor of cultivated soybeans, harbors high genetic diversity and possesses attractive rare alleles.
Objective: We conducted a transcriptome analysis of G.
Genes Genomics
January 2025
Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
Background: TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done.
Objective: The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions.
Leukemia
January 2025
Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!