Effects of pollution and bioleaching process on the mineral composition and texture of contaminated sediments of the Reconquista River, Argentina.

Environ Sci Pollut Res Int

Instituto de Investigación e Ingeniería Ambiental, and Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Campus Miguelete 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires, Argentina.

Published: August 2018

In this work, we report on the structural and textural changes in fluvial sediments from Reconquista River´s basin, Argentina, due to processes of contamination with organic matter and remediation by bioleaching. The original uncontaminated matrix showed quartz and phyllosilicates as the main primary mineral constituents and phases of interstratified illite-montmorillonite as secondary minerals. It was found that in contaminated sediments, the presence of organic matter in high concentration causes changes in the specific surface area, particle size distribution, size and distribution of micro and meso, and the morphology of the particles with respect to the uncontaminated sediment. After the bioleaching process, there were even greater changes in these parameters at the level of secondary mineral formation and the appearance of nanoparticles, which were confirmed by SEM. Especially, we found the formation of cementing substances such as gypsum, promoting the formation of macroporous aggregates and the weathering of clay components. Our results indicate that the bioleaching not only decreases the content of metals but also favors the formation of a material with improved characteristics for potential future applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-0484-2DOI Listing

Publication Analysis

Top Keywords

bioleaching process
8
contaminated sediments
8
sediments reconquista
8
organic matter
8
size distribution
8
effects pollution
4
bioleaching
4
pollution bioleaching
4
process mineral
4
mineral composition
4

Similar Publications

Electrochemical Leaching of Cobalt from Cobaltite: Box-Behnken Design and Optimization with Response Surface Methodology.

ACS Omega

January 2025

Critical Materials Innovation Hub (CMI), Energy and Environment Science and Technology (EES&T) Division, Idaho National Laboratory, 1955 N. Fremont Avenue, P.O. Box 1625, Idaho Falls, Idaho 83415, United States.

Cobalt, a critical metal, is anticipated to increase in market demand in the next couple of decades, particularly as a battery material used in electric vehicle application. To boost the domestic production of cobalt in the United States, an electrochemical process has been developed to recover cobalt from a cobaltite-rich concentrate and produce cobalt- and arsenic-rich leachate. The leaching efficiency of cobalt was optimized with a response surface methodology by modifying the electrochemical parameters.

View Article and Find Full Text PDF

There is still much to be learned about the properties of siderophores and their applications. This study was designed to characterize and optimize the production of the siderophore produced by a marine bacterium Pseudomonas sp. strain ASA235 and then evaluate their use in bioleaching of rare earth elements (REEs) from spent Nickel-metal hydride (NiMH) batteries.

View Article and Find Full Text PDF

This study optimized a one-step precipitation process for manganese recovery from a complex medium-bioleachate obtained from electric arc furnace dust (EAFD). The effects of pH variations and different precipitation agents, including acetone, ethanol, oxalic acid, and ammonium hydroxide, were investigated for manganese recovery. While acetone and ethanol facilitated precipitation, they did not lead to the formation of a specific manganese precipitate.

View Article and Find Full Text PDF

Microbial assisted alleviation of nickel toxicity in plants: A review.

Ecotoxicol Environ Saf

January 2025

Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden. Electronic address:

Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.

View Article and Find Full Text PDF

Enhanced oxidative bioleaching for nickel and metal recovery from arsenic ores moves toward efficient and sustainable extraction.

Chemosphere

February 2025

College of Health and Science, School of Natural Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, LN6 7DL, United Kingdom. Electronic address:

Article Synopsis
  • The study investigates the extraction of nickel and other elements from arsenic-rich ores through oxidative bioleaching using different types of bacteria.
  • Mesophilic bacteria showed over 99% nickel recovery within 28 days for high-grade ores, significantly outperforming chemical methods, which only achieved roughly 26.1%.
  • Additionally, kinetic modeling indicated that the bioleaching process varied based on ore grade, demonstrating the effectiveness of using mixed bacterial cultures for efficiently extracting valuable metals from these challenging ores.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!