The aim of the study was to develop a reservoir-type transdermal patch for a controlled delivery of dexibuprofen and to evaluate its in vivo anti-inflammatory activity in Albino Wistar rats. In order to develop these patches, six formulations of dexibuprofen microemulsion comprising ethyl oleate, Tween 80: PG (2 : 1), and water were prepared by simplex lattice design and characterized. The reservoir compartment was filled with these microemulsions and in vitro release and skin permeation were assessed. The optimized patch was obtained on the basis of the responses: and flux. The impact of drug loading, surface area, membrane thickness, adhesive, and agitation speed on drug release and permeation was also studied. The skin sensitivity reaction and in vivo anti-inflammatory activity of optimized patch were evaluated. Stability study at three different temperatures for three months was carried out. The result suggests that a membrane based patch with zero-order release rate, of 79.13 ± 3.08%, and maximum flux of 331.17 g/cmh can be obtained exhibiting suitable anti-inflammatory activity with no visible skin sensitivity reaction. The outcomes of stability study recommend storage of patches at 4°C having shelf-life of 6.14 months. The study demonstrates that the reservoir-type transdermal patch of dexibuprofen microemulsion has a potential of delivering drug across skin in controlled manner with required anti-inflammatory activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635477PMC
http://dx.doi.org/10.1155/2017/4654958DOI Listing

Publication Analysis

Top Keywords

anti-inflammatory activity
16
dexibuprofen microemulsion
12
reservoir-type transdermal
8
transdermal patch
8
vivo anti-inflammatory
8
optimized patch
8
skin sensitivity
8
sensitivity reaction
8
stability study
8
patch
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!