Ginsenoside compound K (CK) is one of the effective ingredients in antitumor composition of ginsenoside. However, the poor water solubility and significant efflux have limited the widespread clinical use of CK. In this study, preparation of novel CK-loaded d-alpha-tocopheryl polyethylene glycol 1,000 succinate/poly(ethylene glycol)-poly(ε-caprolactone) mixed micelles (CK-M) is discussed to solve the above problems. Particle size, zeta potential, and morphology were characterized using dynamic light scattering and transmission electron microscopy. CK-M are spherical shaped with an average particle size of 53.07±1.31 nm with high drug loading of 11.19%±0.87% and entrapment efficiency of 94.60%±1.45%. Water solubility of CK was improved to 3.78±0.09 mg/mL, which was ~107.35 times higher than free CK. A549 and PC-9 cells were used to evaluate in vitro cytotoxicity and cellular uptake. IC values of CK-M in A549 and PC-9 cells (24 h) were 25.43±2.18 and 18.35±1.90 μg/mL, respectively. Enhanced cellular uptake of CK-M was observed in both cells. Moreover, CK-M promoted tumor cell apoptosis, inhibited tumor cell invasion, metastasis, and efflux through regulation of Bax, Bcl-2, matrix metalloproteinase-2, Caspase-3, and P-glycoprotein. In vivo imaging indicated that CK-M has excellent tumor targeting effect within 24 h, and the relative tumor inhibition rate of CK-M was 52.04%±4.62% compared with control group (<0.01). Thus, CK-M could be an appropriate delivery agent for enhanced solubility and antitumor effect of CK.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655143PMC
http://dx.doi.org/10.2147/IJN.S144305DOI Listing

Publication Analysis

Top Keywords

ginsenoside compound
8
mixed micelles
8
water solubility
8
particle size
8
a549 pc-9
8
pc-9 cells
8
cellular uptake
8
tumor cell
8
ck-m
7
targeted delivery
4

Similar Publications

Bone marrow hematopoietic injury encompasses a range of pathological conditions that disrupt the normal function of the hematopoietic system, primarily through the impaired production and differentiation of bone marrow hematopoietic cells. Key pathogenic mechanisms include aging, radiation damage, chemical induction, infection and inflammation, and cross-talk with non-hematopoietic diseases. These pathological factors often lead to myelosuppression and myeloid skewing.

View Article and Find Full Text PDF

Genome-Wide Identification and Characterization of Gene Family in (Cucurbitaceae).

Life (Basel)

December 2024

Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi'an 710061, China.

is a traditional Chinese medicinal plant of considerable application value and commercial potential, primarily due to its production of various bioactive compounds, particularly dammarane-type triterpenoid saponins that are structurally analogous to ginsenosides. Oxidosqualene cyclase (OSC), a pivotal enzyme in the biosynthesis of triterpenoid metabolites in plants, catalyzes the conversion of oxidosqualene into triterpenoid precursors, which are essential components of the secondary metabolites found in . To elucidate the role of gene family members in the synthesis of gypenosides within , this study undertook a comprehensive genome-wide identification and characterization of genes within and compared their expression levels across populations distributed over different geographical regions by both transcriptome sequencing and qRT-PCR experimental validation.

View Article and Find Full Text PDF

As a critical disease usually infected by , with a worldwide effect on dairy animals, subclinical mastitis is characterized by persistence and treatment resistance. During mastitis, the blood-milk barrier (BMB)'s integrity is impaired, resulting in pathogen invasion and milk quality decline. In this study, it was found that ginsenoside Rg1 (Rg1), a natural anti-inflammatory and antioxidant compound derived from ginseng, inhibited the onset of tight junction (TJ) dysfunction and ameliorated lipoteichoic acid (LTA)-induced BMB disruption inside and outside the organisms.

View Article and Find Full Text PDF

Hypoglycemic Effect of Ginsenoside Compound K Mediated by N-Acetylserotonin Derived From Gut Microbiota.

Phytother Res

January 2025

Engineering Research Center of Applied Technology of Pharmacogenomics (Ministry of Education, China), Hunan Key Laboratory of Pharmacomicrobiomics, Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.

Article Synopsis
  • Ginsenoside compound K (GCK) has a significant hypoglycemic effect related to gut microbiota, but its precise mechanisms, especially in high-fat-diet-induced type 2 diabetes (T2D), are not well understood.
  • The study involved creating a diabetic mouse model and conducting fecal microbiota transplantation to explore GCK's role in regulating blood sugar levels.
  • Results indicated that GCK improved metabolic disorders and changed gut microbiota, leading to increased levels of N-acetylserotonin (NAS) and glucagon-like peptide-1 (GLP-1), thereby enhancing insulin sensitivity in the diabetic mice.
View Article and Find Full Text PDF

Ginsenoside Rg1: A bioactive therapeutic agent for diverse liver diseases.

Pharmacol Res

January 2025

Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China. Electronic address:

Diverse liver diseases are characterised by late diagnosis and rapid progression and have become one of the major threats to human health. To delay the transition from benign tissue lesions to a substantial organ injury, scientists have gradually applied natural compounds derived from plants as a complementary therapy in the field of hepatology. Ginseng (Panax ginseng C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!