Objective: Previous studies have demonstrated Stromal interaction molecule 1 (STIM1)-mediated store-operated Ca entry (SOCE) contributes to intracellular Ca accumulation. The present study aimed to investigate the expression of STIM1 and its downstream molecules Orai1/TRPC1 in the context of myocardial ischemia/reperfusion injury (MIRI) and the effect of STIM1 inhibition on Ca accumulation and apoptosis in H9c2 cardiomyocytes subjected to hypoxia/reoxygenation (H/R).

Methods: Expression of STIM1/Orai1/TRPC1 was determined by RT-PCR and Western blot in mice subjected to MIRI and H9C2 cardiomyocytes subjected to H/R. To knock-down STIM1, H9C2 cardiomyocytes was transfected with Stealth SiRNA. Apoptosis was analyzed by both flow cytometry and TUNEL assay. Cell viability was measured by MTT assay. Intracellular Ca concentration was detected by laser scanning confocal microscopy using Fluo-3/AM probe. Furthermore, the opening of mitochondrial permeability transition pore (mPTP) was assessed by coloading with calcein AM and CoCl, while ROS generation was evaluated using the dye DCFH-DA in H9C2 cardiomyocytes.

Results: Expression of STIM1/Orai1/TRPC1 significantly increased in transcript and translation level after MIRI and H/R In H9C2 cardiomyocytes subjected to H/R, intracellular Ca accumulation significantly increased compared with control group, along with enhanced mPTP opening and elevated ROS generation. However, suppression of STIM1 by SiRNA significantly decreased apoptosis and intracellular Ca accumulation induced by H/R in H9C2 cardiomyocytes, accompanied by attenuated mPTP opening and decreased ROS generation. In addition, suppression of STIM1 increased the Bcl-2/Bax ratio, decreased Orai1/TRPC1, and cleaved caspase-3 expression.

Conclusion: Suppression of STIM1 reduced intracellular calcium level and attenuated hypoxia/reoxygenation induced apoptosis in H9C2 cardiomyocytes. Our findings provide a new perspective in understanding STIM1-mediated calcium overload in the setting of MIRI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700273PMC
http://dx.doi.org/10.1042/BSR20171249DOI Listing

Publication Analysis

Top Keywords

h9c2 cardiomyocytes
24
suppression stim1
16
apoptosis h9c2
12
intracellular accumulation
12
cardiomyocytes subjected
12
ros generation
12
stim1 reduced
8
reduced intracellular
8
intracellular calcium
8
attenuated hypoxia/reoxygenation
8

Similar Publications

Introduction: The molecular mechanisms underlying cardioprotection against doxorubicin (DOX)-induced myocardial injury are poorly understood. Histone deacetylase 2 (HDAC2) plays a significant role in oxidative stress, apoptosis, and mitochondrial dysfunction and is implicated in many human diseases, This study investigated the relationship between HDAC2 expression and DOX-induced myocardial injury using the rat model of DOX-induced cardiotoxicity and experiments with the H9c2 cardiomyocytes.

Methods: The rat model of DOX-induced myocardial injury was established by administering DOX via intraperitoneal injections.

View Article and Find Full Text PDF

Discovering new hub genes of dilated cardiomyopathy.

ESC Heart Fail

March 2025

MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China.

Aims: Dilated cardiomyopathy (DCM) has a poor prognosis and exhibits a complex and diverse aetiology and genetic profile. The genes responsible for the pathogenesis of DCM have not been fully identified. The present study aimed to explore new hub genes of DCM by mining the human DCM databases and further by experimental validation.

View Article and Find Full Text PDF

Pyruvate dehydrogenase kinase 1 controls triacylglycerol hydrolysis in cardiomyocytes.

J Biol Chem

March 2025

Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. Electronic address:

Pyruvate dehydrogenase kinase (PDK) 1 is one of four isozymes that inhibit the oxidative decarboxylation of pyruvate to acetyl-CoA via pyruvate dehydrogenase. PDK activity is elevated in fasting or starvation conditions to conserve carbohydrate reserves. PDK has also been shown to increase mitochondrial fatty acid utilization.

View Article and Find Full Text PDF

IntroductionDiabetic cardiomyopathy (DCM) is a complication of diabetes mellitus (DM) that can lead to heart failure and increase the risk of mortality. Pedunculoside (PE), a novel triterpenoid saponin, exhibits anti-inflammatory and anti-oxidative stress (OS) properties. However, its role in DCM remains unexplored.

View Article and Find Full Text PDF

Sauchinone preserves cardiac function in doxorubicin-induced cardiomyopathy by inhibiting the NLRP3 inflammasome.

Phytomedicine

March 2025

Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, Jiangsu 214122, China; Department of Cardiology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan university, Wuxi, Jiangsu 214122, China. Electronic address:

Background: Doxorubicin (Dox)-induced cardiomyopathy (DIC) is characterized by severe myocardial damage that can progress to dilated cardiomyopathy and potentially lead to heart failure. No effective prevention or treatment strategies are available for DIC. Sauchinone, a diastereomeric lignan isolated from Saururus chinensis, is known for its notable anti-inflammatory effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!