Hepatocellular carcinoma (HCC) is a frequent form of cancer with a poor prognosis, and environmental factors significantly contribute to the risk. Despite knowledge that a Western-style diet is a risk factor in the development of nonalcoholic steatohepatitis (NASH) and subsequent progression to HCC, diet-induced signaling changes are not well understood. Understanding molecular mechanisms altered by diet is crucial for developing preventive and therapeutic strategies. We have previously shown that diets enriched with high-fat and high-cholesterol, shown to produce NASH and HCC, induce hepatic protein kinase C beta (PKCβ) expression in mice, and a systemic loss of PKCβ promotes hepatic cholesterol accumulation in response to this diet. Here, we sought to determine how PKCβ and diet functionally interact during the pathogenesis of NASH and how it may promote hepatic carcinogenesis. We found that diet-induced hepatic PKCβ expression is accompanied by an increase in phosphorylation of Ser780 of retinoblastoma (RB) protein. Intriguingly, PKCβ livers exhibited reduced protein levels despite increased transcription of the RB gene. It is also accompanied by reduced RBL-1 with no significant effect on RBL-2 protein levels. We also found reduced expression of the PKCβ in HCC compared to non-tumorous liver in human patients. These results raise an interesting possibility that diet-induced PKCβ activation represents an important mediator in the functional wiring of cholesterol metabolism and tumorigenesis through modulating stability of cell cycle-associated proteins. The potential role of PKCβ in the suppression of tumorigenesis is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650297 | PMC |
http://dx.doi.org/10.18632/oncotarget.17890 | DOI Listing |
Environ Microbiome
January 2025
Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.
The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.
View Article and Find Full Text PDFBMC Genomics
January 2025
Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.
View Article and Find Full Text PDFBMC Endocr Disord
January 2025
Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
Background: Menopause is a significant phase in women's health, in which the incidence of obstructive sleep apnea (OSA) is significantly increased. Body fat distribution changes with age and hormone levels in postmenopausal women, but the extent to which changes in body fat distribution affect the occurrence of OSA is unclear.
Methods: This research performed a cross-sectional analysis utilizing data from the 2015-2016 National Health and Nutrition Examination Survey (NHANES).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!