AI Article Synopsis

  • A new type of sensitive sensor is created by immobilizing gold nanospheres on a microstructured fiber, designed to detect changes in the refractive index of liquids.
  • These fibers have a small core diameter and utilize electrostatic control to arrange the nanoparticles at a density of 4 nanoparticles per micrometer, achieving high sensitivity (200 nm/RIU) for aqueous solutions.
  • This innovative sensing platform is user-friendly, efficient, and can be integrated into various systems for quick detection of small sample volumes.

Article Abstract

Here, we show that immobilizing ensembles of gold nanospheres within tailored areas on the open side of an exposed-core microstructured fiber yields a monolithic, highly sensitive plasmon-based refractive index sensor. The nanoparticle densities (average nanoparticle diameter: 45 nm) on the small-core fiber (core diameter: 2.5 μm) are controlled electrostatically, yielding densities of 4  nanoparticles/μm. Refractive index sensitivities of 200 nm/RIU for aqueous analytes at high fringe contrast levels (-20  dB) have been observed. Our concept presents an easy-to-use, efficient, and multiplex-compatible sensing platform for rapid small-volume detection with the capacity for integration into a bioanalytic, optofluidic, or microfluidic system.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.42.004395DOI Listing

Publication Analysis

Top Keywords

sensing platform
8
plasmonic nanoparticle-functionalized
4
nanoparticle-functionalized exposed-core
4
exposed-core fiber-an
4
fiber-an optofluidic
4
optofluidic refractive
4
refractive sensing
4
platform immobilizing
4
immobilizing ensembles
4
ensembles gold
4

Similar Publications

Kirkendall Effect-Mediated Transformation of ZIF-67 to NiCo-LDH Nanocages as Oxidase Mimics for Multicolor Point-of-Care Testing of β-Galactosidase Activity and .

Anal Chem

January 2025

Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China.

Early and portable detection of pathogenic bacteria is crucial for ensuring food safety, monitoring product quality, and tracing the sources of bacterial infections. Moving beyond traditional plate-culture counting methods, the analysis of active bacterial components offers a rapid means of quantifying bacteria. Here, metal-organic framework (MOF)-derived NiCo-layered double hydroxide nanosheets (LDHs), synthesized via the Kirkendall effect, were employed as highly effective oxidase mimics to generate reactive oxygen species (ROS).

View Article and Find Full Text PDF

Aiming at the construction of novel platforms with excellent performances in both circularly polarized photoluminescence (CP-PL) and electrochemiluminescence (CP-ECL), a new family of pyrenophanes with rigidly locked pyrene dimers and varied bridges has been designed and synthesized. Attributed to densely packed pyrene excimers, the resultant pyrenophanes revealed tunable bridge-dependent emission behaviors, as investigated by femtosecond time-resolved transient absorption spectroscopy. More importantly, all these planar chiral pyrenophanes display strong CP-PL with large dissymmetry factor (gPL) values up to 0.

View Article and Find Full Text PDF

The flexibility and programmability of CRISPR-Cas technology have made it one of the most popular tools for biomarker diagnostics and gene regulation. Especially, the CRISPR-Cas12 system has shown exceptional clinical diagnosis and gene editing capabilities. Here, we discovered that although the top loop of the 5' handle of guide RNA can undergo central splitting, deactivating CRISPR-Cas12a, the segments can dramatically restore CRISPR function through nucleic acid self-assembly or interactions with small molecules and aptamers.

View Article and Find Full Text PDF

Future efforts towards Mars exploration should include a discussion about the effects that the strict application of Planetary Protection policies is having on the astrobiological exploration of Mars, which is resulting in a continued delay in the search for Martian life. As proactive steps in the path forward, here we propose advances in three areas. First, we suggest that a redefinition of Planetary Protection and Special Regions is required for the case of Mars.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) play a critical role in regulating various physiological processes. To gain a comprehensive understanding of their distinct functions in different physiological events, it is imperative to detect binary ROS simultaneously. However, the development of the sensing method capable of binary ROS detection remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!