Although many have studied the effects of pulsatile flow on extracorporeal circulation, its advantages remain controversial. One reason for this situation is that in most studies, pulsatility was evaluated using an in vitro model system. The most serious disadvantage of such model systems is that they lack consideration of anatomical variations due to the use of a straight tubing line to mimic the aorta. In the current study, the authors constructed and tested the feasibility of a three-dimensional (3D) printed, patient-specific, silicone aortic model to determine whether aortic cannula tip positional changes affect energy equivalent pressure (EEP) and surplus hemodynamic energy (SHE) in carotid arteries. Donovan model systems were connected to a pulsatile pump (Korea hybrid ventricular assist device [KH-VAD]; Korea Artificial Organ Center, Seoul, Korea) and a 3D printed silicone model of the ascending aorta. The KH-VAD mimicked the heart, and another pulsatile pump (Twin-Pulse Life Support [T-PLS]; Newheartbio Co., Seoul, Korea) was connected to an aortic cannula, which was inserted at three different tip positions. Using this 3D printed silicone model of the ascending aorta, it was found that EEP and SHE of both right and left carotid arteries were significantly affected by aortic cannula tip position. The authors suggest that the described 3D printed, patient-specific, aorta model provides a feasible option to measure hemodynamic energy accurately given the considerable anatomical differences of model circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MAT.0000000000000638DOI Listing

Publication Analysis

Top Keywords

printed patient-specific
12
hemodynamic energy
12
aortic cannula
12
model
9
model system
8
extracorporeal circulation
8
model systems
8
carotid arteries
8
pulsatile pump
8
seoul korea
8

Similar Publications

Objective: Spinal orthoses are the most viable conservative treatment for scoliosis, and additive manufacturing techniques have shown huge perspective in producing patient-specific braces, reducing material waste, and production times. This pilot study aimed at determining whether 3D-printed braces could induce advantages or disadvantages compared to conventional braces in terms of mobility and gait, and at quantitatively evaluating the effects of braces on mobility and gait.

Methods: Ten participants were included in the study, eight with adolescent idiopathic scoliosis and two with osteogenesis imperfecta.

View Article and Find Full Text PDF

Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.

View Article and Find Full Text PDF

Introduction: Cervical foraminotomy is a procedure used to treat patients with radiculopathy. While the procedure can be performed using a minimally invasive technique, achieving complete visualization of relevant anatomy can be challenging. This study explores the use of patient-specific three-dimensional (3D) printed anatomical models, created from advanced medical imaging data, for preoperative planning and intraoperative guidance in cervical foraminotomy by comparing fluoroscopy time, operative time, estimated blood loss volume, and functional improvement.

View Article and Find Full Text PDF

Vascularized bone grafts have been successfully established for complex bone defects. The integration of three-dimensional (3D) simulation and printing technology may aid in more precise surgical planning and intraoperative bone shaping. The purpose of the present study was to describe the implementation and surgical application of this innovative technology for bone reconstruction.

View Article and Find Full Text PDF

Cartilage repair remains a critical challenge in orthopaedic medicine due to the tissue's limited self-healing ability, contributing to degenerative joint conditions such as osteoarthritis (OA). In response, regenerative medicine has developed advanced therapeutic strategies, including cell-based therapies, gene editing, and bioengineered scaffolds, to promote cartilage regeneration and restore joint function. This narrative review aims to explore the latest developments in cartilage repair techniques, focusing on mesenchymal stem cell (MSC) therapy, gene-based interventions, and biomaterial innovations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!