Time-resolved photoluminescence (TRPL) measurements of nanowires (NWs) are often carried out on broken-off NWs in order to avoid the ensemble effects as well as substrate contribution. However, the development of NW-array solar cells could benefit from non-destructive optical characterization to allow faster feedback and further device processing. With this work, we show that different NW array and substrate spectral behaviors with delay time and excitation power can be used to determine which part of the sample dominates the detected spectrum. Here, we evaluate TRPL characterization of dense periodic as-grown GaAs NW arrays on a p-type GaAs substrate, including a sample with uncapped GaAs NWs and several samples passivated with AlGaAs radial shell of varied composition and thickness. We observe a strong spectral overlap of substrate and NW signals and find that the NWs can absorb part of the substrate luminescence signal, thus resulting in a modified substrate signal. The level of absorption depends on the NW-array geometry, making a deconvolution of the NW signal very difficult. By studying TRPL of substrate-only and as-grown NWs at 770 and 400 nm excitation wavelengths, we find a difference in spectral behavior with delay time and excitation power that can be used to assess whether the signal is dominated by the NWs. We find that the NW signal dominates with 400 nm excitation wavelength, where we observe two different types of excitation power dependence for the NWs capped with high and low Al composition shells. Finally, from the excitation power dependence of the peak TRPL signal, we extract an estimate of background carrier concentration in the NWs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aa974bDOI Listing

Publication Analysis

Top Keywords

excitation power
16
time-resolved photoluminescence
8
nws
8
delay time
8
time excitation
8
400 excitation
8
power dependence
8
substrate
7
excitation
6
signal
6

Similar Publications

Light-harvesting complex II (LHCII), the most abundant membrane protein in photosystem II, plays dual roles, i.e., efficient light harvesting and energy transfer to the reaction center under low light conditions and dissipating excess energy as heat to prevent photodamage under high irradiation conditions.

View Article and Find Full Text PDF

Spike-wave-discharges (SWD) are the electrophysiological hallmark of absence epilepsy. SWD are generated in the thalamo-cortical network and a seizure onset zone was identified in the somatosensory cortex (S1). We have shown before that inhibition of the centromedian thalamic nucleus (CM) in GAERS rats resulted in a selective suppression of the spike component while rhythmic cortical 5-9 Hz oscillations remained present.

View Article and Find Full Text PDF

Data-Driven Machine Learning Strategy for Designing Metal-Ion-Doped γ-BiMoO Photocatalysts to Enhance Degradation Performance.

J Phys Chem B

December 2024

Science and Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency Safety and Rescue Technology, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China.

Doped semiconductors are often used to improve photocatalytic efficiency and address the challenges of easy recombination of electron-hole pairs and poor photoluminescence. However, the reproducibility and complexity of experimental studies result in time-consuming and less cost-effective studies, and it is difficult to gain insights into the intrinsic properties of doped photocatalysts to control their performance. Introducing a machine learning approach, we constructed a photocatalytic model of transition-metal- and rare earth metal-ion-doped γ-BiMoO.

View Article and Find Full Text PDF

Enhancement of Harmonic Heating by Magnetized Plasma Series Resonance in Capacitive Radio Frequency Discharges.

Phys Rev Lett

December 2024

Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China.

We present a novel resonance mode in capacitive radio frequency (rf) discharges in the presence of an oblique magnetic field at low pressures. We observe the self-excitation of high-frequency harmonics of the current in magnetized capacitive rf discharges through the magnetized plasma series resonance (MPSR) induced by applying a low-frequency power. Utilizing an equivalent circuit model, we reveal that these harmonics arise from the hybrid combination of the magnetic gyration of electrons and the PSR.

View Article and Find Full Text PDF

Understanding the nature and onset of neurophysiological changes, and the selective vulnerability of central hub regions in the functional network, may aid in managing the growing impact of Alzheimer's disease on society. However, the precise neurophysiological alterations occurring in the pre-clinical stage of human Alzheimer's disease remain controversial. This study aims to provide increased insights on quantitative neurophysiological alterations during a true early stage of Alzheimer's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!