Cellulose nanocrystals (CNC) have been studied as nanostructured building blocks for functional materials and function as a model nanomaterial mesogen for cholesteric (chiral nematic) liquid crystalline phases. In this study, both rheology and small angle neutron scattering (RheoSANS) were used to measure changes in flow-oriented order parameter and viscosity as a function of shear rate for isotropic, biphasic, liquid crystalline, and gel dispersions of CNC in deuterium oxide (DO). In contrast to plots of viscosity versus shear rate, the order parameter trends showed three distinct rheological regions over a range of concentrations. This finding is significant because the existence of three rheological regions as a function of shear rate is a long-standing signature of liquid crystalline phases composed of rod-like polymers, but observing this trend has been elusive for high-concentration dispersions of anisotropic nanomaterials. The results of this work are valuable for guiding the development of processing methodologies for producing ordered materials from CNC dispersions and the broader class of chiral nanomaterial mesogens.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7sm00685cDOI Listing

Publication Analysis

Top Keywords

liquid crystalline
12
shear rate
12
crystalline phases
8
order parameter
8
function shear
8
rheological regions
8
insights flow
4
flow microstructural
4
microstructural relaxation
4
relaxation behavior
4

Similar Publications

Purpose: This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide.

Methods: A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS.

View Article and Find Full Text PDF

Turmeric (Curcuma longa L.) has gained significant attention for its medicinal properties, yet its therapeutic applications are often limited by low aqueous solubility and susceptibility to environmental factors. This study investigates the formulation of a curcumin-rich turmeric extract-β-cyclodextrin inclusion complex (TUE-β-CD) to enhance its bioactivity and stability.

View Article and Find Full Text PDF

We present an application of our new theoretical formulation of quantum dynamics, moment propagation theory (MPT) (Boyer et al., J. Chem.

View Article and Find Full Text PDF

A novel method for synthesizing nanomaterials involves microbial or phytochemical nano-factories, which offer an eco-friendly, cost-effective, and reliable approach to producing clean and reproducible products. In this study, magnesium oxide nanoparticles (MgO NPs) were synthesized using Avicennia marina, a marine plant, as both a nucleation and stabilizing agent. The MgO NPs were characterized for crystallinity, cut-off wavelength, morphology, thermal stability, and surface properties using XRD, EDX, BET, UV-Visible spectroscopy, DLS, zeta potential analysis, SEM, TEM, TGA/DTA, and PL spectroscopy.

View Article and Find Full Text PDF

Propagation of Orientation Across Lengthscales in Sheared Self-Assembling Hierarchical Suspensions via Rheo-PLI-SAXS.

Adv Sci (Weinh)

December 2024

Department of Industrial and Materials Science, Division of Engineering Materials, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.

Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!