Deep sequencing is an advanced technology in genomic biology to detect the precise order of nucleotides in a strand of DNA/RNA molecule. The analysis of deep sequencing data also requires sophisticated knowledge in both computational software and bioinformatics. In this chapter, the procedures of deep sequencing analysis of microRNA (miRNA) transcriptome in triple-negative breast cancer and adjacent normal tissue are described in detail. As miRNAs are critical regulators of gene expression and many of them were previously reported to be associated with the malignant progression of human cancer, the analytical method that accurately identifies deregulated miRNAs in a specific type of cancer is thus important for the understanding of its tumor behavior. We obtained raw sequence reads of miRNA expression from 24 triple-negative breast cancers and 14 adjacent normal tissues using deep sequencing technology in this work. Expression data of miRNA reads were normalized with the quantile-quantile scaling method and were analyzed statistically. A miRNA expression signature composed of 25 differentially expressed miRNAs showed to be an effective classifier between triple-negative breast cancers and adjacent normal tissues in a hierarchical clustering analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7435-1_8 | DOI Listing |
Cancer Lett
January 2025
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China. Electronic address:
This study, conducted as part of a multicenter phase III clinical trial, aimed to assess the utility of circulating tumor DNA (ctDNA)-based minimal residual disease (MRD) in comparing the efficacy of short-course and long-course chemoradiotherapy (CRT) for locally advanced rectal cancer (LARC). A total of 244 plasma samples from 79 LARC patients undergoing neoadjuvant therapy (NAT) before surgery were collected at various time points. Targeted deep sequencing using a novel MRD panel was performed.
View Article and Find Full Text PDFJ Transl Med
January 2025
Allen Institute for Immunology, Seattle, WA, USA.
Background: The field of single cell technologies has rapidly advanced our comprehension of the human immune system, offering unprecedented insights into cellular heterogeneity and immune function. While cryopreserved peripheral blood mononuclear cell (PBMC) samples enable deep characterization of immune cells, challenges in clinical isolation and preservation limit their application in underserved communities with limited access to research facilities. We present CryoSCAPE (Cryopreservation for Scalable Cellular And Proteomic Exploration), a scalable method for immune studies of human PBMC with multi-omic single cell assays using direct cryopreservation of whole blood.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Early Detection and Interception of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Early therapeutic intervention in high-risk smoldering multiple myeloma (HR-SMM) has shown benefits, however, no studies have assessed whether biochemical progression or response depth predicts long-term outcomes. The single-arm I-PRISM phase II trial (NCT02916771) evaluated ixazomib, lenalidomide, and dexamethasone in 55 patients with HR-SMM. The primary endpoint, median progression-free survival (PFS), was not reached (NR) (95% CI: 57.
View Article and Find Full Text PDFPLoS One
January 2025
Danau Girang Field Centre, c/o Sabah Wildlife Department, Kota Kinabalu, Malaysia.
Characterizing the feeding ecology of threatened species is essential to establish appropriate conservation strategies. We focused our study on the proboscis monkey (Nasalis larvatus), an endangered primate species which is endemic to the island of Borneo. Our survey was conducted in the Lower Kinabatangan Wildlife Sanctuary (LKWS), a riverine protected area that is surrounded by oil palm plantations.
View Article and Find Full Text PDFMol Biol Rep
January 2025
School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, 39564, USA.
Background: The gray snapper (Lutjanus griseus) is a marine reef fish commonly found in coastal and shelf waters of the tropical and subtropical western Atlantic Ocean. In this work, a draft reference genome was developed to support population genomic studies of gray snapper needed to assist with conservation and fisheries management efforts.
Methods And Results: Hybrid assembly of PacBio and Illumina sequencing reads yielded a 1,003,098,032 bp reference across 2039 scaffolds with N50 and L50 values of 1,691,591 bp and 163 scaffolds, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!