Correction to: Innovative intraoral cooling device better tolerated and equally effective as ice cooling.

Cancer Chemother Pharmacol

Department of Oral Medicine & Pathology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Box 450, 405 30, Gothenburg, Sweden.

Published: January 2018

Unfortunately, the online published article has error in Table 1. The correct Table 1 is given in the following page.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828281PMC
http://dx.doi.org/10.1007/s00280-017-3465-8DOI Listing

Publication Analysis

Top Keywords

correction innovative
4
innovative intraoral
4
intraoral cooling
4
cooling device
4
device better
4
better tolerated
4
tolerated equally
4
equally effective
4
effective ice
4
ice cooling
4

Similar Publications

Measurement and Assessment of Head-to-Helmet Contact Forces.

Ann Biomed Eng

January 2025

Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.

Purpose: To evaluate the population variation in head-to-helmet contact forces in helmet users.

Methods: Four different size Kevlar composite helmets were instrumented with contact pressure sensors and chinstrap tension meters. A total number of 89 volunteers (25 female and 64 male volunteers) participated in the study.

View Article and Find Full Text PDF

Quantitative and Visual Benefits of Data-Driven Motion Correction on Oncologic PET/CT: A Prospective Cross-sectional Study.

Acad Radiol

January 2025

Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110 (S.I., M.A.T., M.I., C.S., R.L., A.H., R.L.W., T.J.F.). Electronic address:

Rationale And Objective: Conventional positron emission tomography (PET) respiratory gating utilizes a fraction of acquired PET counts (i.e., optimal gate [OG]), whereas elastic motion correction with deblurring (EMCD) utilizes all PET counts to reconstruct motion-corrected images without increasing image noise.

View Article and Find Full Text PDF

Mixed reality for preoperative planning and intraoperative assistance of surgical correction of complex congenital heart defects.

J Thorac Cardiovasc Surg

January 2025

Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada; Center for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, Canada.

Objectives: Mixed reality (MixR) is an innovative visualization tool that presents virtual elements in a real-world environment, enabling real-time interaction between the user and the combined digital/physical reality. We aimed to explore the feasibility of MixR in enhancing preoperative planning and intraoperative guidance for the correction of various complex congenital heart defects (CHDs).

Methods: Patients underwent cardiac computed tomography or cardiac magnetic resonance and segmentation of digital imaging and communications in medicine (DICOM) images was performed.

View Article and Find Full Text PDF

Integrated metabolomics and mass spectrometry imaging analysis reveal the efficacy and mechanism of Huangkui capsule on type 2 diabetic nephropathy.

Phytomedicine

January 2025

State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; Department of Nephrology, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. Electronic address:

Background: Huangkui capsule (HKC), a Chinese patent medicine, is clinically used for treating diabetic nephropathy. However, the core disease-specific biomarkers and targets of type 2 diabetic nephropathy (T2DN) and the therapeutic mechanism of HKC are not fully elucidated.

Purpose: This study aimed to investigate the therapeutic effects and underlying molecular mechanisms of HKC for T2DN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!