Sugar-modified nucleosides are prime synthetic targets in anticancer and antiviral drug development. Radical mediated thiol-ene coupling was applied for the first time on nucleoside enofuranoside derivatives to produce a broad range of thio-substituted d-ribo, -arabino, -xylo and l-lyxo configured pyrimidine nucleosides. In contrast to the analogous reactions of simple sugar exomethylenes, surprisingly, hydrothiolation of nucleoside alkenes under the standard conditions of various initiation methods showed low to moderate yields and very low stereoselectivity. Optimizing the reaction conditions, we have found that cooling the reaction mixture has a significant beneficial effect on both the conversion and the stereoselectivity, and UV-light initiated hydrothiolation of C2'-, C3'- and C4'-exomethylene derivatives of nucleosides at -80 °C proceeded in good to high yields, and, in most cases, in excellent diastereoselectivity. Beyond the temperature, the solvent, the protecting groups on nucleosides and, in some cases, the configuration of the thiols also affected the stereochemical outcome of the additions. The anomalous l-lyxo diastereoselectivity observed upon the addition of 1-thio-β-d-gluco- and galactopyranose derivatives onto C4',5'-unsaturated uridines is attributed to steric mismatch between the d-ribo C4'-radical intermediates and the β-configured 1-thiosugars.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7ob02184d | DOI Listing |
Chembiochem
November 2024
Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan.
Position-specific nucleoside sugar modifications have been shown to improve the translational activity and stability of chemically synthesized mRNA. For pharmaceutical applications of chemically modified mRNAs, a rapid purification methodology is imperative to identify the optimal modification pattern. However, while the chemical synthesis of mRNAs can be accomplished by splint ligation of oligonucleotide fragments, the current purification method for ligated mRNAs based on denaturing polyacrylamide gel electrophoresis tends to be time consuming.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Future Medicine Co., Ltd, 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea. Electronic address:
This study investigated the impact of conformation on the binding affinity of carbanucleosides to A and A adenosine receptors (ARs). A series of nucleosides, including saturated, unsaturated, North (N)-methano, and South (S)-methanocarbanucleosides was prepared, and their binding affinities to AAR and AAR were assessed. Biological evaluations revealed that all synthesized (S)-methanocarbanucleosides had negligible binding to both receptors, and most (N)-methanocarbanucleosides exhibited high binding affinities.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy.
The reagent system based on the combined use of EtSiH/I acts as an efficient -glycosidation promoter for the synthesis of natural and sugar-modified nucleosides. An analysis of reaction stereoselectivity in the absence of C2-positioned stereodirecting groups revealed high selectivity with six-membered substrates, depending on the nucleophilic character of the nucleobase or based on anomerization reactions. The synthetic utility of the EtSiH/I-mediated -glycosidation reaction was highlighted by its use in the synthesis of the investigational drug apricitabine.
View Article and Find Full Text PDFJ Am Chem Soc
November 2023
Department of Chemistry, Institute of Chemical Epigenetics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany.
Sci Rep
July 2023
Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary.
Drug-resistant Plasmodium falciparum (Pf) infections are a major burden on the population and the healthcare system. The establishment of Pf resistance to most existing antimalarial therapies has complicated the problem, and the emergence of resistance to artemisinin derivatives is even more concerning. It is increasingly difficult to cure malaria patients due to the limited availability of effective antimalarial drugs, resulting in an urgent need for more efficacious and affordable treatments to eradicate this disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!