Recombinant poxviruses, utilized as vaccine vectors and oncolytic viruses, often require manipulation at multiple genetic loci in the viral genome. It is essential for viral vectors to possess no adventitious mutations and no (antibiotic) selection marker in the final product for human patients in order to comply with the guidance from the regulatory agencies. Rintoul et al. have previously developed a selectable and excisable marker (SEM) system for the rapid generation of recombinant vaccinia virus. In the current study, we describe an improved methodology for rapid creation and selection of recombinant poxviruses with multiple genetic manipulations solely based on expression of a fluorescent protein and with no requirement for drug selection that can lead to cellular stress and the risk of adventitious mutations throughout the viral genome. Using this improved procedure combined with the SEM system, we have constructed multiple marker-free oncolytic poxviruses expressing different cytokines and other therapeutic genes. The high fidelity of inserted DNA sequences validates the utility of this improved procedure for generation of therapeutic viruses for human patients. We have created an oncolytic poxvirus expressing human chemokine CCL5, designated as vvDD-A34R-hCCL5, with manipulations at two genetic loci in a single virus. Finally, we have produced and purified this virus in clinical grade for its use in a phase I clinical trial and presented data on initial in vitro characterization of the virus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651493PMC
http://dx.doi.org/10.1016/j.omtm.2017.09.007DOI Listing

Publication Analysis

Top Keywords

rapid generation
8
vaccinia virus
8
recombinant poxviruses
8
multiple genetic
8
genetic loci
8
viral genome
8
adventitious mutations
8
human patients
8
sem system
8
improved procedure
8

Similar Publications

Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.

View Article and Find Full Text PDF

The application of the technique for dorsal median sulcus mapping in intramedullary space occupying surgery: a single-center experience.

Acta Neurochir (Wien)

January 2025

Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Purpose: To investigate the technique for dorsal median sulcus (DMS) mapping and assess its application value in preserving dorsal columnn (DC) function during intramedullary space occupying surgery based on a single-center experience.

Methods: A retrospective analysis was conducted on 41 cases of intramedullary spinal cord tumor admitted to the Department of Neurosurgery at the First Affiliated Hospital of Xiamen University from March 2017 to August 2023. All included cases underwent intraoperative electrophysiological monitoring, and were divided into a study group (n = 18) and a control group (n = 23), based on whether DMS mapping technique was utilized.

View Article and Find Full Text PDF

Multi-trauma presents significant challenges due to the complexity of injuries and high mortality rates. Early identification and intervention are crucial for improving outcomes in these critically injured patients. This retrospective study analyzed clinical data from multi-trauma patients admitted to the emergency department of Huiyang Sanhe Hospital between January 10, 2020, and September 30, 2022.

View Article and Find Full Text PDF

T-cell redirecting therapy (TCRT), specifically chimeric antigen receptor T-cell therapy (CAR T-cells) and bispecific T-cell engagers (TCEs) represent a remarkable advance in the treatment of multiple myeloma (MM). There are several products available around the world and several more in development targeting primarily B-cell maturation antigen (BCMA) and G protein-coupled receptor class C group 5 member D (GRPC5D). The relatively rapid availability of multiple immunotherapies brings the necessity to understand how a certain agent may affect the safety and efficacy of a subsequent immunotherapy so MM physicians and patients can aim at optimal sequential use of these therapies.

View Article and Find Full Text PDF

Implementing targeted vaccination activities to address inequalities in vaccination: a qualitative study.

J Public Health (Oxf)

January 2025

Division of Nursing, Midwifery and Social Work, School of Health Sciences, The University of Manchester, Jean McFarlane Building, Oxford Road, Manchester M13 9PL, UK.

Background: As the UK COVID-19 vaccination programme progressed, greater emphasis was placed on the implementation of localized targeted vaccination activities to address inequalities in vaccination coverage. This study examines one UK region's approach to the delivery of targeted vaccination activities and identifies key factors influencing implementation.

Methods: Qualitative interviews were conducted with a purposive sample of key individuals involved in vaccination delivery across Greater Manchester (GM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!