Biotransformation of by Rat Intestinal Microflora and Cardioprotective Effects of Diosgenin.

Oxid Med Cell Longev

School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.

Published: July 2018

Studying the biotransformation of natural products by intestinal microflora is an important approach to understanding how and why some medicines-particularly natural medicines-work. In many cases, the active components are generated by metabolic activation. This is critical for drug research and development. As a means to explore the therapeutic mechanism of (DN), a medicinal plant used to treat myocardial ischemia (MI), metabolites generated by intestinal microflora from DN were identified, and the cardioprotective efficacy of these metabolites was evaluated. Our results demonstrate that diosgenin is the main metabolite produced by rat intestinal microflora from DN. Further, our results show that diosgenin protects the myocardium against ischemic insult through increasing enzymatic and nonenzymatic antioxidant levels and by decreasing oxidative stress damage. These mechanisms explain the clinical efficacy of DN as an anti-MI drug.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632472PMC
http://dx.doi.org/10.1155/2017/4176518DOI Listing

Publication Analysis

Top Keywords

intestinal microflora
16
rat intestinal
8
biotransformation rat
4
intestinal
4
microflora
4
microflora cardioprotective
4
cardioprotective effects
4
effects diosgenin
4
diosgenin studying
4
studying biotransformation
4

Similar Publications

Gastrointestinal absorption and its regulation of hawthorn leaves flavonoids.

Sci Rep

January 2025

School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P.R. China.

Hawthorn leave flavonoids (HLF) are widely used as an herb or dietary supplements for cardio-cerebrovascular diseases. However, its gastrointestinal absorption behavior and mechanism have not been disclosed. In this study, gastrointestinal absorption and its regulation of 4''-O-glucosylvitexin (GLV), 2''-O-rhamnosylvitexin (RHV), vitexin (VIT), rutin (RUT) and hyperoside (HP) in HLF were investigated using in vitro, in situ and in vivo models.

View Article and Find Full Text PDF

Isatidis root polysaccharides ameliorates post-weaning diarrhea by promoting intestinal health and modulating the gut microbiota in piglets.

Vet Q

December 2025

Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.

This study aimed to investigate the effects of dietary isatidis root polysaccharide (IRP) on diarrhea, immunity, and intestinal health in weanling piglets. Forty healthy piglets were randomly assigned to five groups receiving varying dosages of IRP. The findings indicated that different concentrations of IRP significantly reduced diarrhea scores ( < 0.

View Article and Find Full Text PDF

The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.

View Article and Find Full Text PDF

Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.

View Article and Find Full Text PDF

Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!