Inspired by the behavior of dandelion sowing, a new novel swarm intelligence algorithm, namely, dandelion algorithm (DA), is proposed for global optimization of complex functions in this paper. In DA, the dandelion population will be divided into two subpopulations, and different subpopulations will undergo different sowing behaviors. Moreover, another sowing method is designed to jump out of local optimum. In order to demonstrate the validation of DA, we compare the proposed algorithm with other existing algorithms, including bat algorithm, particle swarm optimization, and enhanced fireworks algorithm. Simulations show that the proposed algorithm seems much superior to other algorithms. At the same time, the proposed algorithm can be applied to optimize extreme learning machine (ELM) for biomedical classification problems, and the effect is considerable. At last, we use different fusion methods to form different fusion classifiers, and the fusion classifiers can achieve higher accuracy and better stability to some extent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5612329PMC
http://dx.doi.org/10.1155/2017/4523754DOI Listing

Publication Analysis

Top Keywords

proposed algorithm
12
dandelion algorithm
8
extreme learning
8
learning machine
8
biomedical classification
8
classification problems
8
fusion classifiers
8
algorithm
7
dandelion
4
algorithm optimizes
4

Similar Publications

Background: In data-sparse areas such as health care, computer scientists aim to leverage as much available information as possible to increase the accuracy of their machine learning models' outputs. As a standard, categorical data, such as patients' gender, socioeconomic status, or skin color, are used to train models in fusion with other data types, such as medical images and text-based medical information. However, the effects of including categorical data features for model training in such data-scarce areas are underexamined, particularly regarding models intended to serve individuals equitably in a diverse population.

View Article and Find Full Text PDF

Optimal router node placement (RNP) is an effective method for improving the performance of wireless mesh networks (WMN). However, solving the RNP problem in WMN is difficult because it is NP-hard. As a result, this problem can only be solved using approximate optimization algorithms such as heuristics and meta-heuristics.

View Article and Find Full Text PDF

As an effective approach to mitigating urban environmental issues, New Energy Vehicles (NEVs) have become a focal point of research regarding their current development status and future prospects in China. Addressing the significant disparities in the development of the NEVs industry across different cities, this study focuses on ten typical Chinese cities and develops a novel multi-attribute decision-making (MADM) framework to evaluate the prospects of NEVs promotion in these cities. The study first establishes a comprehensive indicator system that covers key dimensions such as economy, policy support, infrastructure, technological innovation, and environment, encompassing five different types of evaluation information.

View Article and Find Full Text PDF

Diabetic retinopathy, a retinal disorder resulting from diabetes mellitus, is a prominent cause of visual degradation and loss among the global population. Therefore, the identification and classification of diabetic retinopathy are of utmost importance in the clinical diagnosis and therapy. Currently, these duties are extensively carried out by manual examination utilizing the human visual system.

View Article and Find Full Text PDF

Sharing cooking recipes is a great way to exchange culinary ideas and provide instructions for food preparation. However, categorizing raw recipes found online into appropriate food genres can be challenging due to a lack of adequate labeled data. In this study, we present a dataset named the "Assorted, Archetypal, and Annotated Two Million Extended (3A2M+) Cooking Recipe Dataset" that contains two million culinary recipes labeled in respective categories with extended named entities extracted from recipe descriptions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!