A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extracting the Evaluations of Stereotypes: Bi-factor Model of the Stereotype Content Structure. | LitMetric

Extracting the Evaluations of Stereotypes: Bi-factor Model of the Stereotype Content Structure.

Front Psychol

Department of Psychology and Sociology, Faculty of Social Sciences and Humanities, University of Zaragoza, Teruel, Spain.

Published: October 2017

Stereotype dimensions-competence, morality and sociability-are fundamental to studying the perception of other groups. These dimensions have shown moderate/high positive correlations with each other that do not reflect the theoretical expectations. The explanation for this (e.g., halo effect) undervalues the utility of the shared variance identified. In contrast, in this work we propose that this common variance could represent the global evaluation of the perceived group. Bi-factor models are proposed to improve the internal structure and to take advantage of the information representing the shared variance among dimensions. Bi-factor models were compared with first order models and other alternative models in three large samples (300-309 participants). The relationships among the global and specific bi-factor dimensions with a global evaluation dimension (measured through a semantic differential) were estimated. The results support the use of bi-factor models rather than first order models (and other alternative models). Bi-factor models also show a greater utility to directly and more easily explore the stereotype content including its evaluative content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5649216PMC
http://dx.doi.org/10.3389/fpsyg.2017.01692DOI Listing

Publication Analysis

Top Keywords

bi-factor models
16
stereotype content
8
shared variance
8
global evaluation
8
models
8
order models
8
models alternative
8
alternative models
8
bi-factor
6
extracting evaluations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!