In land plants, linear tetrapyrrole (bilin)-based phytochrome photosensors optimize photosynthetic light capture by mediating massive reprogramming of gene expression. But, surprisingly, many green algal genomes lack phytochrome genes. Studies of the heme oxygenase mutant () of the green alga suggest that bilin biosynthesis in plastids is essential for proper regulation of a nuclear gene network implicated in oxygen detoxification during dark-to-light transitions. cannot grow photoautotrophically and photoacclimates poorly to increased illumination. We show that these phenotypes are due to reduced accumulation of photosystem I (PSI) reaction centers, the PSI electron acceptors 5'-monohydroxyphylloquinone and phylloquinone, and the loss of PSI and photosystem II antennae complexes during photoacclimation. The mutant resembles chlorophyll biosynthesis mutants phenotypically, but can be rescued by exogenous biliverdin IXα, the bilin produced by HMOX1. This rescue is independent of photosynthesis and is strongly dependent on blue light. RNA-seq comparisons of , genetically complemented , and chemically rescued reveal that tetrapyrrole biosynthesis and known photoreceptor and photosynthesis-related genes are not impacted in the mutant at the transcript level. We propose that a bilin-based, blue-light-sensing system within plastids evolved together with a bilin-based retrograde signaling pathway to ensure that a robust photosynthetic apparatus is sustained in light-grown Chlamydomonas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5728120PMC
http://dx.doi.org/10.1105/tpc.17.00149DOI Listing

Publication Analysis

Top Keywords

bilin-dependent photoacclimation
4
photoacclimation land
4
land plants
4
plants linear
4
linear tetrapyrrole
4
tetrapyrrole bilin-based
4
bilin-based phytochrome
4
phytochrome photosensors
4
photosensors optimize
4
optimize photosynthetic
4

Similar Publications

Bilin-Dependent Photoacclimation in .

Plant Cell

November 2017

Department of Molecular and Cellular Biology, University of California, Davis, California 95616

In land plants, linear tetrapyrrole (bilin)-based phytochrome photosensors optimize photosynthetic light capture by mediating massive reprogramming of gene expression. But, surprisingly, many green algal genomes lack phytochrome genes. Studies of the heme oxygenase mutant () of the green alga suggest that bilin biosynthesis in plastids is essential for proper regulation of a nuclear gene network implicated in oxygen detoxification during dark-to-light transitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!