Background: Genome wide association studies have identified microtubule associated protein tau (MAPT) H1 haplotype single nucleotide polymorphisms (SNPs) as leading common risk variants for Parkinson's disease, progressive supranuclear palsy and corticobasal degeneration. The MAPT risk variants fall within a large 1.8 Mb region of high linkage disequilibrium, making it difficult to discern the functionally important risk variants. Here, we leverage the strong haplotype-specific expression of MAPT exon 3 to investigate the functionality of SNPs that fall within this H1 haplotype region of linkage disequilibrium.

Methods: In this study, we dissect the molecular mechanisms by which haplotype-specific SNPs confer allele-specific effects on the alternative splicing of MAPT exon 3. Firstly, we use haplotype-hybrid whole-locus genomic MAPT vectors studies to identify functional SNPs. Next, we characterise the RNA-protein interactions at two loci by mass spectrometry. Lastly, we knockdown candidate splice factors to determine their effect on MAPT exon 3 using a novel allele-specific qPCR assay.

Results: Using whole-locus genomic DNA expression vectors to express MAPT haplotype variants, we demonstrate that rs17651213 regulates exon 3 inclusion in a haplotype-specific manner. We further investigated the functionality of this region using RNA-electrophoretic mobility shift assays to show differential RNA-protein complex formation at the H1 and H2 sequence variants of SNP rs17651213 and rs1800547 and subsequently identified candidate trans-acting splicing factors interacting with these functional SNPs sequences by RNA-protein pull-down experiment and mass spectrometry. Finally, gene knockdown of candidate splice factors identified by mass spectrometry demonstrate a role for hnRNP F and hnRNP Q in the haplotype-specific regulation of exon 3 inclusion.

Conclusions: We identified common splice factors hnRNP F and hnRNP Q regulating the haplotype-specific splicing of MAPT exon 3 through intronic variants rs1800547 and rs17651213. This work demonstrates an integrated approach to characterise the functionality of risk variants in large regions of linkage disequilibrium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663040PMC
http://dx.doi.org/10.1186/s13024-017-0224-6DOI Listing

Publication Analysis

Top Keywords

mapt exon
20
risk variants
16
mass spectrometry
12
splice factors
12
mapt
8
mapt haplotype
8
linkage disequilibrium
8
splicing mapt
8
whole-locus genomic
8
functional snps
8

Similar Publications

Tau Isoform-Regulated Schwann Cell Proliferation and Migration Improve Peripheral Nerve Regeneration After Injury.

Int J Mol Sci

November 2024

Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.

Tau is a microtubule-associated protein that plays a vital role in the mammalian nervous system. Alternative splicing of the gene leads to the formation of tau isoforms with varying N-terminal inserts and microtubule-binding repeats. Dysregulation of tau alternative splicing has been linked to diseases in the central nervous system, but the roles of tau isoforms in the peripheral nervous system remain unclear.

View Article and Find Full Text PDF

Introduction: Herpes simplex virus 1 (HSV-1) infection alters critical markers of Alzheimer's Disease (AD) in neurons. One key marker of AD is the hyperphosphorylation of Tau, accompanied by altered levels of Tau isoforms. However, an imbalance in these Tau splice variants, specifically resulting from altered 3R to 4R splicing of exon 10, has yet to be directly associated with HSV-1 infection.

View Article and Find Full Text PDF

Corrigendum to: A clinical, molecular genetics and pathological study of a FTDP-17 family with a heterozygous splicing variant c.823-10 G>T at the intron 9/exon 10 of the MAPT gene.

Neurobiol Aging

February 2025

Department of Neurology, Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland; Health affairs, University College Dublin, Dublin, Ireland; Ireland East Hospital Group, Dublin, Ireland. Electronic address:

View Article and Find Full Text PDF

The cellular prion protein (PrP) plays many roles in the developing and adult brain. In addition, PrP binds to several amyloids in oligomeric and prefibrillar forms and may act as a putative receptor of abnormal misfolded protein species. The role of PrP in tau seeding and spreading is not known.

View Article and Find Full Text PDF

Aims: Mutations in the MAPT gene encoding tau protein can cause autosomal dominant neurodegenerative tauopathies including frontotemporal dementia (often with Parkinsonism). In Alzheimer's disease, the most common tauopathy, synapse loss is the strongest pathological correlate of cognitive decline. Recently, Positron Emission Tomography (PET) imaging with synaptic tracers revealed clinically relevant loss of synapses in primary tauopathies; however, the molecular mechanisms leading to synapse degeneration in primary tauopathies remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!