Full-arch rehabilitation of patients with severe tooth wear due to parafunctional behavior is a challenge for dentists and dental technicians, especially when a highly esthetic outcome is desired. A variety of different treatment options and prosthetic materials are available for such a clinical undertaking. The ongoing progress of computer-aided design/computer-assisted manufacture technologies in combination with all-ceramic materials provides a predictable workflow for these complex cases. This case history report describes a comprehensive, step-by-step treatment protocol leading to an optimally predictable treatment outcome for an esthetically compromised patient.

Download full-text PDF

Source
http://dx.doi.org/10.11607/ijp.5500DOI Listing

Publication Analysis

Top Keywords

computer-aided design/computer-assisted
8
design/computer-assisted manufacture
8
case history
8
history report
8
manufacture monolithic
4
monolithic restorations
4
restorations severely
4
severely worn
4
worn dentition
4
dentition case
4

Similar Publications

Purpose: The aim of this study was to evaluate the feasibility of using patient-specific implants (PSI) for complex shaft corrective osteotomies in multiplanar deformities of long bones in the lower extremities. Additionally, it aimed to investigate the added value of these implants by quantifying surgical accuracy on postoperative CT, comparing their outcomes to two commonly used techniques: 3D virtual visualizations and 3D-printed surgical guides.

Methods: Six tibial and femoral shaft corrective osteotomies were planned and performed on three Thiel embalmed human specimen.

View Article and Find Full Text PDF

Background: Computer-assisted learning (CAL) has the potential to enhance learning outcomes and satisfaction. However, there are limited reports in the literature that describe or evaluate the implementation of this method to promote competency-based learning in removable partial denture (RPD) design. Therefore, this study aimed to: (1) compare the effectiveness of different learning methods using a 3D software-aided RPD design program, (2) evaluate the learning outcomes associated with these different methods following active learning, and (3) assess students' satisfaction.

View Article and Find Full Text PDF

Background: The objective of this review is to evaluate the methodological quality of meta-analyses and observe the consistency of the evidence they generated to provide comprehensive and reliable evidence for the clinical use of three-dimensional (3D) printing in surgical treatment of fracture.

Methods: We searched three databases (PubMed, Embase, and Web of Science) up until August 2024. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards were adhered to in this review.

View Article and Find Full Text PDF

The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.

View Article and Find Full Text PDF

Importance of Computer-Aided Drug Design in Modern Pharmaceutical Research.

Curr Drug Discov Technol

December 2024

Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpViharSector-3, M-B Road, New Delhi, 110017, India.

Background: Computer-Aided Drug Design (CADD) approaches are essential in the drug discovery and development process. Both academic institutions and pharmaceutical and biotechnology corporations utilize them to enhance the efficacy of bioactive compounds.

Objective: This study aims to entice researchers by investigating the benefits of Computer-Aided Drug and Design (CADD) and its fundamental principles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!