Salmonella enterica serovar typhimurium extensively remodels the host late endocytic compartments to establish its vacuolar niche within the host cells conducive for its replication, also known as the Salmonella-containing vacuole (SCV). By maintaining a prolonged interaction with late endosomes and lysosomes of the host cells in the form of interconnected network of tubules (Salmonella-induced filaments or SIFs), Salmonella gains access to both membrane and fluid-phase cargo from these compartments. This is essential for maintaining SCV membrane integrity and for bacterial intravacuolar nutrition. Here, we have identified the multisubunit lysosomal tethering factor-HOPS (HOmotypic fusion and Protein Sorting) complex as a crucial host factor facilitating delivery of late endosomal and lysosomal content to SCVs, providing membrane for SIF formation, and nutrients for intravacuolar bacterial replication. Accordingly, depletion of HOPS subunits significantly reduced the bacterial load in non-phagocytic and phagocytic cells as well as in a mouse model of Salmonella infection. We found that Salmonella effector SifA in complex with its binding partner; SKIP, interacts with HOPS subunit Vps39 and mediates recruitment of this tethering factor to SCV compartments. The lysosomal small GTPase Arl8b that binds to, and promotes membrane localization of Vps41 (and other HOPS subunits) was also required for HOPS recruitment to SCVs and SIFs. Our findings suggest that Salmonella recruits the host late endosomal and lysosomal membrane fusion machinery to its vacuolar niche for access to host membrane and nutrients, ensuring its intracellular survival and replication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5679646 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1006700 | DOI Listing |
Bioorg Chem
December 2024
Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China. Electronic address:
Dysregulation of the fibroblast growth factor receptor 1 (FGFR1) signaling has prompted efforts to develop therapeutic agents, which is a carcinogenic driver of many cancers, including breast, prostate, bladder, and chronic myeloid leukemia. Despite significant progress in the development of potent and selective FGFR inhibitors, the long-term efficacy of these drugs in cancer therapy has been hampered by the rapid onset of acquired resistance. Therefore, more drug discovery strategies are needed to promote the development of FGFR-targeted drugs.
View Article and Find Full Text PDFEMBO Rep
January 2025
Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP's role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
Background: After surgical repair of rotator cuff (RC) tears, the torn tendon heals unsatisfactorily to the greater tuberosity owing to limited regeneration of the bone-tendon (BT) insertion. This situation motivates the need for new interventions to enhance BT healing in the RC repair site.
Purpose: To develop injectable fibrocartilage-forming cores by tethering fibroblast growth factor 18 (FGF18) on acellular fibrocartilage matrix microparticles (AFM-MPs) and evaluate their efficacy on BT healing.
Plant Physiol Biochem
December 2024
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China. Electronic address:
Rab GTPases are a class of small GTP-binding proteins, play crucial roles in the membrane transport machinery with in eukaryotic cells. They dynamically regulate the precise targeting and tethering of transport vesicles to specific compartments by transitioning between active and inactive states. In plants, Rab GTPases are classified into eight distinct subfamilies: Rab1/D, Rab2/B, Rab5/F, Rab6/H, Rab7/G, Rab8/E, Rab11/A, and Rab18/C.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2024
Department of Pediatrics (T.S., J.-R.M., Y.H.C., J.M.S., J. Kaplan, A.C., L.W., D.G., S.T., S.I., M.D., W.Y., A.L.M., M.R.).
Background: Computational modeling indicated that pathological high shear stress (HSS; 100 dyn/cm) is generated in pulmonary arteries (PAs; 100-500 µm) in congenital heart defects causing PA hypertension (PAH) and in idiopathic PAH with occlusive vascular remodeling. Endothelial-to-mesenchymal transition (EndMT) is a feature of PAH. We hypothesize that HSS induces EndMT, contributing to the initiation and progression of PAH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!