Sensitivity to noise, particularly road traffic noise, can increase cortisol levels and result in changes in immune system biomarkers. Therefore, continuous exposure to noise can have an effect on immune function, hormonal levels, and cardiovascular function, leading to hypertension and stress. The purpose of this study was to investigate the changes in stress-and immune system-related biomarkers according to the self-reported sensitivity to noise and exposure to road traffic noise, to ultimately determine the potential effects of noise on health. A survey was conducted through questionnaire (ISO/TS 15666) sent to 172 female subjects in Korea, including 128 from Ulsan and 44 from Seoul. The average noise level was calculated, and blood samples were collected for measurements of cortisol levels, Natural killer (NK) / Natural killer T (NKT) cell populations, and NK cell activity (through measurements of interleukin-12 (IL-12) and interferon-gamma (INF-γ) concentrations). Multivariate linear regression analysis of the measured biomarkers according to the road traffic noise level and self-reported noise sensitivity was conducted adjusting for the effects of age, alcohol status, smoking status, regular exercise, and residence period. IL-12 levels increased, whereas the NKT cell population decreased with increasing noise levels. The results further suggested that cortisol levels are more influenced by the subject's sensitivity to noise than to the level of chronic road traffic noise. Therefore, noise appears to have the largest effect on IL-12 levels as well as the population and activity of NKT cells. In conclusion, our results suggest that low-level road traffic noise and sensitivity to noise can affect health by causing changes in the immune response through mechanisms other than increased cortisol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662213 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187084 | PLOS |
J Clin Med
December 2024
Division of Maxillofacial Surgery, Surgical Science Department, Città della Salute e della Scienza Hospital, University of Turin, 10126 Turin, Italy.
: Mandibular fractures are among the most common facial injuries. Bilateral fractures of the mandibular body region (BBMFs), however, are rare. The aim of this retrospective study was to analyze the characteristics, surgical management, and outcomes of BBMFs in a third-level trauma center in northern Italy.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Computer Engineering, Brandenburg University of Technology, Cottbus-Senftenberg, 03046 Cottbus, Germany.
Occasionally, four cars arrive at the four legs of an unsignalized intersection at the same time or almost at the same time. If each lane has a stop sign, all four cars are required to stop. In such instances, gestures are used to communicate approval for one vehicle to leave.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Civil Engineering and Architecture, University of Catania, 64 Santa Sofia Street, 95123 Catania, Italy.
Eye-tracking technologies are emerging in research aiming to understand the visual behavior of cyclists to improve their safety. These technologies gather real-time information to reveal what the cyclists look at and how they respond at a specific location and time. This systematic review investigates the use of eye-tracking systems to improve cyclist safety.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Transport, Warsaw University of Technology, 00-665 Warsaw, Poland.
Are the regulations relating to electromagnetic compatibility (EMC) sufficient to ensure the safety of all autonomy systems? EMC is one of the critical factors influencing the proper functioning of a vehicle and its safety. However, the safety of autonomous vehicles from the perspective of EMC has not been comprehensively researched to date. The purpose of this article is to evaluate whether the currently imposed requirements are adequate.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Biomedical Engineering Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom.
This study explores the cobenefits of reduced nitrogen dioxide (NO), ozone (O), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee's Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!