Larvae of the polyphagous tobacco cutworm moth, () encounter potentially toxic allelochemicals in food. It is therefore important for to produce detoxification enzymes such as cytochrome P450 monooxygenases (P450s). In this study, we have identified two novel cytochrome P450 genes of , named and Phylogenetic analysis indicated that they belong to the subfamily. Expression levels of these genes at different development stages were determined by real-time quantitative polymerase chain reaction (PCR). The highest expression was found in the midgut and the fat body. Larvae fed with a diet supplemented with xanthotoxin or coumarin showed a strongly increased expression of and in the midgut and fat body as compared to larvae that consumed a control diet. In contrast, larvae consuming a diet containing aflatoxin B1 or quercetin did not induce the expression of these genes. and showed different expression profiles with respect to certain allelochemicals. For example, a diet containing cinnamic acid stimulated the expression of , whereas no changes were observed for . We suggest that the fine tuning of P450 gene expression is an important adaptation mechanism that allows polyphagous larvae to survive in a changing chemical environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713248PMC
http://dx.doi.org/10.3390/ijms18112278DOI Listing

Publication Analysis

Top Keywords

p450 genes
8
tobacco cutworm
8
cutworm moth
8
expression
8
cytochrome p450
8
expression midgut
8
midgut fat
8
fat body
8
larvae
5
identification cytochrome
4

Similar Publications

Background: The cytochrome P450s-mediated metabolic resistance and the target site insensitivity caused by the knockdown resistance (kdr) mutation in the voltage-gated sodium channel (vgsc) gene were the main mechanisms conferring resistance to deltamethrin in Culex quinquefasciatus from Thailand. This study aimed to investigate the expression levels of cytochrome P450 genes and detect mutations of the vgsc gene in deltamethrin-resistant Cx. quinquefasciatus populations in Thailand.

View Article and Find Full Text PDF

Adaptive evolution of stress response genes in parasites aligns with host niche diversity.

BMC Biol

January 2025

Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.

Background: Stress responses are key the survival of parasites and, consequently, also the evolutionary success of these organisms. Despite this importance, our understanding of the evolution of molecular pathways dealing with environmental stressors in parasitic animals remains limited. Here, we tested the link between adaptive evolution of parasite stress response genes and their ecological diversity and species richness.

View Article and Find Full Text PDF

Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.

View Article and Find Full Text PDF

Transgenic Cotton Expressing ds Significantly Delays the Growth and Development of by Inhibiting Its Glycolysis and TCA Cycle.

Int J Mol Sci

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.

In our previous research, we found that not only participates in the detoxification metabolism of neonicotinoid insecticides in cotton aphid but also affects their growth and development. However, how does transgenic cotton expressing ds affect the growth and development of cotton aphid? In this study, we combined transcriptome and metabolome to analyze how to inhibit the growth and development of cotton aphid treated with transgenic cotton expressing ds (TG cotton). The results suggested that a total of 509 differentially expressed genes (DEGs) were identified based on the DESeq method, and a total of 431 differential metabolites (DAMs) were discovered using UPLC-MS in the metabolic analysis.

View Article and Find Full Text PDF

Maize Herbivore-Induced Volatiles Enhance Xenobiotic Detoxification in Larvae of and .

Plants (Basel)

December 2024

Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The release of herbivore-induced plant volatiles (HIPVs) has been recognized to be an important strategy for plant adaptation to herbivore attack. However, whether these induced volatiles are beneficial to insect herbivores, particularly insect larvae, is largely unknown. We used the two important highly polyphagous lepidopteran pests and to evaluate the benefit on xenobiotic detoxification of larval exposure to HIPVs released by the host plant maize ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!