Inkjet printing technology has emerged as an alternative manufacturing method for low-cost production of electrodes. Despite significant progress, there is still a lack in the production of ion-selective electrodes. Herein, the two-step fabrication of the first inkjet-printed sulfide-selective electrode (IPSSE) is described. The two-step fabrication consists of printing a silver electrode followed by an electrochemical deposition of sulfide to produce a second kind electrode (Ag/AgS). The performance of this novel device was tested using potentiometric measurements. Nernstian response (-29.4 ± 0.3 mV·decade) was obtained within concentrations of 0.03-50 mM with a response time of ∼3 s. Furthermore, river/sea-spiked environmental samples and samples from a bioreactor for sulfate reduction to sulfide were measured and compared against a commercial sensor giving no significant differences. The IPSSE described in this work showed good reproducibility and durability during daily measurements over 15 days without any special storage conditions. Considering all the current challenges in inkjet-printed ion-selective electrodes, this different fabrication approach opens a new perspective for mass production of all-solid state ion-selective electrodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.7b03041 | DOI Listing |
Sci Rep
December 2024
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123, Trento, Italy.
In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].
View Article and Find Full Text PDFAnal Sci
December 2024
Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China.
In recent years, wearable sweat sensors have garnered significant attention for real-time monitoring of human physiological information because of their ability to continuously and non-invasively detect multiple sweat biomarkers. Among these, potentiometric sensors stand out for their low power consumption, low cost, compact design, and real-time monitoring capabilities, making them an ideal alternative for sweat analysis. However, enhancing the sensitivity of ion-selective electrodes (ISEs), a critical parameter of potentiometric sensors, remains a challenging research focus.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China. Electronic address:
Recently, hybrid capacitive deionization (HCDI) has garnered significant attention for its potential in the selective extraction of cesium (Cs) from radioactive wastewater and salt lakes, which is crucial for resolving the supply-demand imbalance of cesium resources and eliminating radioactive contamination. However, developing HCDI electrodes capable of effectively separating and extracting Cs remains a significant challenge. In this work, we proposed an innovative strategy involving the doping of inactive metal ions to develop zinc-doped manganese hexacyanoferrate (ZMFC) as an HCDI cathode.
View Article and Find Full Text PDFTalanta
December 2024
Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059, Krakow, Poland. Electronic address:
The application of carbon soot as a solid-contact layer in potentiometric sensor is presented. The preparation method of carbon layer from the candle is inexpensive and as short as 10 s and was optimized and described in the scope of this paper. With the use of the proposed procedure, it is possible to cover not only the glassy carbon disc electrodes, but all surfaces of various shapes and types, like foil or paper.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Monitoring potassium ion (K) concentration is essential in veterinary medicine, particularly for preventing hypokalemia in dairy cows, which can severely impact their health and productivity. While traditional laboratory methods like atomic absorption spectrometry are accurate, they are also time-consuming and require complex sample preparation. Ion-selective electrodes (ISEs) provide an alternative that is faster and more suitable for field measurements, but their performance is often compromised under variable temperature conditions, leading to inaccuracies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!