AI Article Synopsis

  • Nanoscale wear in micro/nanosystems can significantly reduce their performance and lifespan, particularly in setups like atomic force microscopy (AFM) and MEMS/NEMS.
  • Coating surfaces with graphene can minimize localized pressure fluctuations caused by atomic roughness, thereby enhancing durability and wear resistance.
  • Molecular dynamics simulations demonstrate that the graphene coating effectively increases wear resistance by improving contact conditions and reducing atomic interlocking, offering a potential strategy for developing longer-lasting materials in advanced technology applications.

Article Abstract

Nanoscale wear is one of the key factors hindering the performance and lifetime of micro- and nanosystems, such as the scanning tip wear in atomic force microscopy (AFM), the head-disk interface in magnetic storage system, and the moving components in micro- or nanoelectromechanical systems (MEMS/NEMS). Here, we propose to construct the graphene/graphene interfacial architecture to suppress the nanoscale wear. Molecular dynamics simulations show that the atomic roughness of the sliding surfaces with either stepped or amorphous structure can lead to strong inhomogeneity of the local contact pressure distribution. By coating graphene on both sides of the frictional surfaces, the local contact pressure fluctuations due to the atomic roughness are suppressed. Moreover, this trend is more evident with the increasing layer number of the graphene coating. Furthermore, the nanoscratching simulation suggests that the rupture of graphene is driven by the inhomogeneous pressure distribution-induced lateral atomic interlocking between the rough tip and substrate and the consequent in-plane lattice deformation and C-C bond breaking during sliding. By coating graphene on the rough amorphous carbon tip, the critical normal load for wear failure of graphene is significantly increased, due to the weakening effect of the atomic interlocking by improving the contact conditions with atomically smooth graphene/graphene sliding interface. This investigation reveals a strategy for reducing nanowear by suppressing the local contact pressure fluctuations via graphene/graphene sliding interface architecture, which provides a theoretical guidance for designing wear-resistant coatings for the longevity of AFM probes and MEMS/NEMS systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b11133DOI Listing

Publication Analysis

Top Keywords

nanoscale wear
12
local contact
12
contact pressure
12
graphene/graphene interfacial
8
molecular dynamics
8
atomic roughness
8
coating graphene
8
pressure fluctuations
8
atomic interlocking
8
graphene/graphene sliding
8

Similar Publications

This study explores the preparation of lubricating oleo-dispersions using electrospun nanofibrous mats made from low-sulfonate lignin (LSL) and polycaprolactone (PCL). The rheological and tribological properties of the oleo-dispersions were significantly modulated for the first time through the exploration of LSL/PCL ratio and electrospinning conditions such as applied voltage, distance between the tip and collector, flow rate, ambient humidity, and collector configuration. Adequate uniform ultrathin fibers and Small-amplitude oscillatory shear (SAOS) functions of the oleo-dispersions, with storage modulus values ranging from 10 to 10 Pa at 25 °C, were obtained with a flow rate of 0.

View Article and Find Full Text PDF

Friction is a critical factor in the proper functioning of human organs as well as in the potential development of disease. It is also important for the design of diagnostic and interventional medical devices. Nanoscale surface roughness, viscoelastic or plastic deformations, wear, and lubrication all influence the functions of individual cells.

View Article and Find Full Text PDF

Optimal submicron roughness for balancing degradation behavior, immune modulation, and microbial adhesion on zinc-based barrier membranes.

Biomater Adv

December 2024

Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510180, China. Electronic address:

Metallic zinc (Zn) has been demonstrated to be a promising alternative to barrier membrane materials for guided bone regeneration. Surface roughness significantly affects the properties of degradable Zn-based metals, especially within the Janus micro-environments of tissue regeneration. However, the effects of optimal surface roughness on Zn remain unknown.

View Article and Find Full Text PDF

Despite the ubiquitous use of glasses, their simultaneous susceptibility toward scratch-induced defects and atmospheric hydration deteriorates their mechanical and chemical durability. Here, it is demonstrated that the deposition of a few-layer graphene provides unprecedented wear resistance to silica glass in aqueous conditions. To this extent, nanoscale scratch tests are carried out on graphene-glass surfaces via contact-mode atomic force microscopy with chemically inert and reactive tips.

View Article and Find Full Text PDF

Context: This study employs molecular dynamics simulations to investigate the nanoscale tribological behavior of a single transverse grain boundary in a nickel-based polycrystalline alloy. A series of simulations were conducted using a repetitive rotational friction method to explore the mechanisms by which different grain boundary positions influence variations in wear depth, friction force, friction coefficient, dislocation, stress, and internal damage during repeated friction processes. The results reveal that the grain boundary structure enhances the strength of the nanoscale nickel-based polycrystalline alloy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!