The small heat shock protein (sHsp) chaperones are important for stress survival, yet the molecular details of how they interact with client proteins are not understood. All sHsps share a folded middle domain to which is appended flexible N- and C-terminal regions varying in length and sequence between different sHsps which, in different ways for different sHsps, mediate recognition of client proteins. In plants there is a chloroplast-localized sHsp, Hsp21, and a structural model suggests that Hsp21 has a dodecameric arrangement with six N-terminal arms located on the outside of the dodecamer and six inwardly-facing. Here, we investigated the interactions between Hsp21 and thermosensitive model substrate client proteins in solution, by small-angle X-ray scattering (SAXS) and crosslinking mass spectrometry. The chaperone-client complexes were monitored and the R -values were found to increase continuously during 20 min at 45°, which could reflect binding of partially unfolded clients to the flexible N-terminal arms of the Hsp21 dodecamer. No such increase in R -values was observed with a mutational variant of Hsp21, which is mainly dimeric and has reduced chaperone activity. Crosslinking data suggest that the chaperone-client interactions involve the N-terminal region in Hsp21 and only certain parts in the client proteins. These parts are peripheral structural elements presumably the first to unfold under destabilizing conditions. We propose that the flexible and hydrophobic N-terminal arms of Hsp21 can trap and refold early-unfolding intermediates with or without dodecamer dissociation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.25413DOI Listing

Publication Analysis

Top Keywords

client proteins
20
n-terminal arms
12
chaperone-client interactions
8
hsp21
8
interactions hsp21
8
x-ray scattering
8
crosslinking mass
8
mass spectrometry
8
arms hsp21
8
client
5

Similar Publications

Invasiveness of pituitary adenoma is the main cause of its poor prognosis, mechanism of which remains largely unknown. In this study, the differential proteins between invasive and non-invasive pituitary tumors (IPA and NIPA) were identified by TMT labeled quantitative proteomics. The differential metabolites in venous bloods from patients with IPA and NIPA were analyzed by untargeted metabolomics.

View Article and Find Full Text PDF

Schizophrenia is one of the most debilitating mental illnesses affecting any age group. The mechanism and etiology of schizophrenia are extremely complex and multiple signaling pathways recruit genes implicated in the etiology of this disease. While the role of Wnt/β-catenin signaling in this disorder has been verified, the impact of long noncoding RNAs (lncRNAs) associated with this pathway has not been studied in schizophrenia.

View Article and Find Full Text PDF

RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models.

Mol Neurodegener

January 2025

Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.

Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.

View Article and Find Full Text PDF

Background: The emergence of new molecular targeted drugs marks a breakthrough in asthma treatment, particularly for severe cases. Yet, options for moderate-to-severe asthma treatment remain limited, highlighting the urgent need for novel therapeutic drug targets. In this study, we aimed to identify new treatment targets for asthma using the Mendelian randomization method and large-scale genome-wide association data (GWAS).

View Article and Find Full Text PDF

Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!