A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers. | LitMetric

Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers.

Nanoscale

Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.

Published: November 2017

A membrane-based fluorescent sensing platform is a facile, point-of-care and promising technique in chemo/bio-analytical fields. However, the existing fluorescence sensing films for cancer biomarkers have several problems, with dissatisfactory sensitivity and selectivity, low utilization of probes encapsulated in films as well as the tedious design of membrane structures. In this work, a novel fluorescence sensing platform is fabricated by bio-grafting quantum dots (QDs) onto the surface of electrospun nanofibers (NFs). The aptamer integrated into the QDs/NFs can result in high specificity for recognizing and capturing biomarkers. Partially complementary DNA-attached gold nanoparticles (AuNPs) are employed to efficiently hybridize with the remaining aptamer to quench the fluorescence of QDs by nanometal surface energy transfer (NSET) between them both, which are constructed for prostate specific antigen (PSA) assay. Taking advantage of the networked nanostructure of aptamer-QDs/NFs, the fluorescent film can detect PSA with high sensitivity and a detection limit of 0.46 pg mL, which was further applied in real clinical serum samples. Coupling the surface grafted techniques to the advanced network nanostructure of electrospun NFs, the proposed aptasensing platform can be easily extended to achieve sensitive and selective assays for other biomarkers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr04817cDOI Listing

Publication Analysis

Top Keywords

aptasensing platform
8
sensing platform
8
fluorescence sensing
8
surface-engineered quantum
4
quantum dots/electrospun
4
dots/electrospun nanofibers
4
nanofibers networked
4
fluorescence
4
networked fluorescence
4
fluorescence aptasensing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!