Background: A deep characterization of neurological patients is a crucial step for a detailed knowledge of the pathology and maximal exploitation and customization of the rehabilitation therapy. The muscle synergies analysis was designed to investigate how muscles coactivate and how their eliciting commands change in time during movement production. Few studies investigated the value of muscle synergies for the characterization of neurological patients before rehabilitation therapies. In this article, the synergy analysis was used to characterize a group of chronic poststroke hemiplegic patients.
Methods: Twenty-two poststroke patients performed a session composed of a sequence of 3D reaching movements. They were assessed through an instrumental assessment, by recording kinematics and electromyography to extract muscle synergies and their activation commands. Patients' motor synergies were grouped by the means of cluster analysis. Consistency and characterization of each cluster was assessed and clinically profiled by comparison with standard motor assessments.
Results: Motor synergies were successfully extracted on all 22 patients. Five basic clusters were identified as a trade-off between clustering precision and synthesis power, representing: healthy-like activations, two shoulder compensatory strategies, two elbow predominance patterns. Each cluster was provided with a deep characterization and correlation with clinical scales, range of motion, and smoothness.
Conclusion: The clustering of muscle synergies enabled a pretherapy characterization of patients. Such technique may affect several aspects of the therapy: prediction of outcomes, evaluation of the treatments, customization of doses, and therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645509 | PMC |
http://dx.doi.org/10.3389/fbioe.2017.00062 | DOI Listing |
Trials
January 2025
Neuromusculoskeletal Rehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
Background: Urinary incontinence (UI) is a common and debilitating condition among people with multiple sclerosis (MS) and is more prevalent among women. Over the past decade, numerous studies have investigated the effects of pelvic floor muscle training (PFMT) as a treatment for UI in people with MS. MS negatively impacts pulmonary function even in the early stages of the disease and people with MS may experience respiratory muscle weakness.
View Article and Find Full Text PDFSci Robot
January 2025
Department of Bioengineering, Imperial College of London, London, UK.
Despite the advances in bionic reconstruction of missing limbs, the control of robotic limbs is still limited and, in most cases, not felt to be as natural by users. In this study, we introduce a control approach that combines robotic design based on postural synergies and neural decoding of synergistic behavior of spinal motoneurons. We developed a soft prosthetic hand with two degrees of actuation that realizes postures in a two-dimensional linear manifold generated by two postural synergies.
View Article and Find Full Text PDFWearable Technol
November 2024
Embedded Systems and Robotics Lab, Tezpur University, Tezpur, Assam, India.
Electromyogram (EMG) has been a fundamental approach for prosthetic hand control. However it is limited by the functionality of residual muscles and muscle fatigue. Currently, exploring temporal shifts in brain networks and accurately classifying noninvasive electroencephalogram (EEG) for prosthetic hand control remains challenging.
View Article and Find Full Text PDFWearable Technol
November 2024
BruBotics, Vrije Universiteit Brussel, Brussels, 1050, Belgium.
Advancements in wearable robots aim to improve user motion, motor control, and overall experience by minimizing energetic cost (EC). However, EC is challenging to measure and it is typically indirectly estimated through respiratory gas analysis. This study introduces a novel EMG-based objective function that captures individuals' natural energetic expenditure during walking.
View Article and Find Full Text PDFExp Brain Res
January 2025
Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
This study explores the role of task constraints over muscle synergies expression in the context of upper limb motor impairment after stroke. We recruited nine chronic stroke survivors with upper limb impairments and fifteen healthy controls, who performed a series of tasks designed to evoke muscle synergies through various spatial explorations. These tasks included an isometric force task, a dynamic reaching task, the clinical Fugl-Meyer (FM) assessment, and a pinch task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!