Mesenchymal stromal cell therapy in COPD: from bench to bedside.

Int J Chron Obstruct Pulmon Dis

Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro (UFRJ), RJ, Brazil.

Published: July 2018

COPD is the most frequent chronic respiratory disease and a leading cause of morbidity and mortality. The major risk factor for COPD development is cigarette smoke, and the most efficient treatment for COPD is smoking cessation. However, even after smoking cessation, inflammation, apoptosis, and oxidative stress may persist and continue contributing to disease progression. Although current therapies for COPD (primarily based on anti-inflammatory agents) contribute to the reduction of airway obstruction and minimize COPD exacerbations, none can avoid disease progression or reduce mortality. Within this context, recent advances in mesenchymal stromal cell (MSC) therapy have made this approach a strong candidate for clinical use in the treatment of several pulmonary diseases. MSCs can be readily harvested from diverse tissues and expanded with high efficiency, and have strong immunosuppressive properties. Preclinical studies have demonstrated encouraging outcomes of MSCs therapy for lung disorders, including emphysema. These findings instigated research groups to assess the impact of MSCs in human COPD/emphysema, but clinical results have fallen short of expectations. However, MSCs have demonstrated a good adjuvant role in the clinical scenario. Trials that used MSCs combined with another, primary treatment (eg, endobronchial valves) found that patients derived greater benefit in pulmonary function tests and/or quality of life reports, as well as reductions in systemic markers of inflammation. The present review summarizes and describes the more recent preclinical studies that have been published about MSC therapy for COPD/emphysema and discusses what has already been applied about MSCs treatment in COPD patients in the clinical setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5652911PMC
http://dx.doi.org/10.2147/COPD.S146671DOI Listing

Publication Analysis

Top Keywords

mesenchymal stromal
8
stromal cell
8
treatment copd
8
smoking cessation
8
disease progression
8
msc therapy
8
preclinical studies
8
copd
7
mscs
6
therapy
4

Similar Publications

[The impact of mitochondrial transfer on leukemia progression].

Sheng Li Xue Bao

December 2024

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.

The objective of the present study was to investigate the role and mechanism of bone marrow microenvironmental cells in regulating the mitochondrial mass of leukemia cells, and to uncover the mechanism of leukemia progression at the metabolic level. A mouse model of acute myeloid leukemia (AML) induced by the overexpression of the MLL-AF9 (MA9) fusion protein was established, and the bone marrow cells of AML mice were transplanted into mitochondrial fluorescence reporter mice expressing the Dendra2 protein (mito-Dendra2 mice). The proportion of Dendra2 cells in bone marrow leukemia cells at different stages of AML was quantified by flow cytometry.

View Article and Find Full Text PDF

Functional injectable hydrogel (IH) is promising for infected bone defects (IBDs) repair, but how to endow it with desired antibacterial/immunoregulatory functions as well as avoid mechanical failures during its manipulation has posed as main challenges. Herein, rosmarinic acid (RosA), a natural product with antibacterial/immunoregulatory activities, was utilized to develop a FCR IH through forming phenylboronic acid ester bonds with 4-formylphenyl phenylboronic acid (4-FPBA) grafted chitosan (CS) (FC). After being applied to the IBD site, the FCR IH was then injected with tobramycin (Tob) solution, another alkaline antibacterial drug, to induce in situ crystallization of the FC, endowing the resultant FCRT hydrogel with adaptively enhanced mechanical strength and structural stability.

View Article and Find Full Text PDF

Problem: Endometriosis (EM) is known as a common estrogen-dependent chronic inflammatory disease. Elevated levels of Forkhead box L2 (FOXL2) have been observed in uterine diseases, including EM. However, the molecular mechanism of FOXL2 in EM needs to be further illustrated.

View Article and Find Full Text PDF

Spatiotemporal dynamics of fetal liver hematopoietic niches.

J Exp Med

February 2025

Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France.

Embryonic hematopoietic cells develop in the fetal liver (FL), surrounded by diverse non-hematopoietic stromal cells. However, the spatial organization and cytokine production patterns of the stroma during FL development remain poorly understood. Here, we characterized and mapped the hematopoietic and stromal cell populations at early (E12.

View Article and Find Full Text PDF

This study describes the potential of the conditioned medium (CM) from adipose-derived mesenchymal stromal cells (ASCs) to affect the response of bone cells and support bone remodeling. This was in particular assessed by an in vitro model represented by a 3D human osteoblast-osteoclast co-culture. It has been reported that the effects of ASCs are predominantly attributable to the paracrine effects of their secreted factors, that are present as soluble factors or loaded into extracellular vesicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!