Insights from the analysis of alginate lyase protein model from Pseudomonas fluorescens towards the understanding of mucoid biofilm disruption.

Bioinformation

Centre for Computational Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India.

Published: September 2017

Bacterial biofilm is a protective, slippery and slimy coat secreted by bacterial cells. It helps in attaching to moisturized surfaces during colonization. Alginate is an important component as it is essential for retention of water and nutrients in biofilms. It is a polysaccharide consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) monomers with 1-4 linkage. The alginate lyase (AlgL) secreted by certain bacteria is capable of degrading alginate into oligo-uronides by β-elimination of the glycosidic bond. Therefore, it is of interest to analyze the simulated (GROMACS force filed) structure protein model (homology based on template 4OZV) of AlgL from Pseudomonas fluorescens to gain functional insight mucoid biofilm disruption. We report root mean square deviation (RMSD) and radius of gyration (Rg) profiles of the simulated (molecular dynamics) AlgL protein homology model in this context towards biofilm discruption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651226PMC
http://dx.doi.org/10.6026/97320630013318DOI Listing

Publication Analysis

Top Keywords

alginate lyase
8
protein model
8
pseudomonas fluorescens
8
mucoid biofilm
8
biofilm disruption
8
insights analysis
4
alginate
4
analysis alginate
4
lyase protein
4
model pseudomonas
4

Similar Publications

Directed Evolution of an Alginate Lyase from sp. for Seaweed Fertilizer Production from the Brown Seaweed .

J Agric Food Chem

January 2025

College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.

An alginate lyase (FsAly7) from sp. was engineered by directed evolution to improve its optimum temperature and thermostability. The optimum temperature of the positive mutant mFsAly7 (FsAly7-Ser43Pro) was increased by 5 °C, and the thermal inactivation half-lives at 40 and 45 °C were 4.

View Article and Find Full Text PDF

A bifunctional endolytic alginate lyase with two different lyase catalytic domains from sp. H204.

Front Microbiol

December 2024

Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.

Alginate lyases can fully degrade alginate into various size-defined unsaturated oligosaccharide products by -elimination. Here, we identified the bifunctional endolytic alginate lyase Aly35 from the marine bacterium sp. Strain H204.

View Article and Find Full Text PDF

Genome Analysis of a Polysaccharide-Degrading Bacterium sp. HZ11 and Degradation of Alginate.

Mar Drugs

December 2024

Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264000, China.

Marine bacteria are crucial sources of alginate lyases, which play an essential role in alginate oligosaccharide (AOS) production. This study reports the biochemical characteristics of a new species of the genus, sp. HZ11.

View Article and Find Full Text PDF

Microbial enzymes as powerful natural anti-biofilm candidates.

Microb Cell Fact

December 2024

Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.

Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms.

View Article and Find Full Text PDF

Alginate, a polysaccharide found in brown seaweeds, has regularly gained attention for its potential use as a source of bioactive compounds. However, it is structurally complex with a high molecular weight, limiting its application. Alginate oligosaccharides (AOS) are small, soluble fragments, making them more bioavailable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!