Background: Plant lectins are a group of highly diverse proteins that possess at least one non-catalytic domain that binds reversibly to a specific mono- or oligosaccharide. So far, only seven members in the lectin-arcelin-αAI1 supergene family in legume lectins have been reported to have inhibitory activity of α-amylases.

Objective & Methods: A proteinaceous α-amylase inhibitor was isolated and purified using Ammonium sulfate precipitation (ASP), Ion exchange chromatography (IEC) and Reversed phase liquid chromatography (RPLC) from the mature seeds of chickpea.

Results & Conclusion: Identification by Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS-MS) indicated that the purified proteinaceous α-amylase inhibitor was a chickpea lectin CAL in GenBank (accession No. AGL46982.1). CAL had 227 aa containing a hemopexin- like repeats domain and was a cytoplasm protein. It had very low (<17%) identity with seven members in the lectin-arcelin-aAI1 supergene family in legumes that have α-amylase inhibitory activity. The purified CAL derived from prokaryotic expression was confirmed to have inhibitory activity against various α-amylases. The inhibitory activity of CAL against various α-amylases was severely affected by temperature, pH, incubation time, substrate concentration and CAL protein concentration. Feeding CAL reduced the weight of potato beetle larvae by 27.21% (P<0.05) and survival rate by 6.67% (P>0.05). Our results indicated that CAL is a new type of lectin with inhibitory activity against α-amylases in legume lectins, which can be used as a candidate in genetic engineering for breeding for pest resistance.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929866524666170711120501DOI Listing

Publication Analysis

Top Keywords

inhibitory activity
8
proteinaceous α-amylase
8
α-amylase inhibitor
8
isolation identification
4
identification characterization
4
characterization type
4
type lectin
4
lectin α-amylase
4
α-amylase inhibitory
4
activity chickpea
4

Similar Publications

Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.

View Article and Find Full Text PDF

This study identified the amino acid sequences of peptides generated from the enzymatic hydrolysis of goat milk proteins from two different sources and annotated their functional activities. Peptidomics and molecular docking approaches were used to investigate the antioxidant and ACE inhibitory properties of the unique peptides, revealing the molecular mechanisms underlying their bioactivity. In vitro experiments showed that the IC50 values for ACE inhibition of the four peptides (LSMTDTR, QEALELIR, NIPVGILR, and QAQNVQHY) were 2.

View Article and Find Full Text PDF

Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).

View Article and Find Full Text PDF

Lactobacillus acidophilus YL01 and its exopolysaccharides ameliorate obesity and insulin resistance in obese mice via modulating intestinal specific bacterial groups and AMPK/ACC signaling pathway.

Int J Biol Macromol

January 2025

College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China. Electronic address:

Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!