Peptidase family S46 consists of two types of dipeptidyl-peptidases (DPPs), DPP7 and DPP11, which liberate dipeptides from the N-termini of polypeptides along with the penultimate hydrophobic and acidic residues, respectively. Their specificities are primarily defined by a single amino acid residue, Gly in DPP7 and Arg in DPP11 (numbering for Porphyromonas gingivalis DPP11). Bacterial species in the phyla Proteobacteria and Bacteroidetes generally possess one gene for each, while Bacteroides species exceptionally possess three genes, one gene as DPP7 and two genes as DPP11, annotated based on the full-length similarities. In the present study, we aimed to characterize the above-mentioned Bacteroides S46 DPPs. A recombinant protein of the putative DPP11 gene BF9343_2924 from Bacteroides fragilis harboring Gly exhibited DPP7 activity by hydrolyzing Leu-Leu-4-methylcoumaryl-7-amide (MCA). Another gene, BF9343_2925, as well as the Bacteroides vulgatus gene (BVU_2252) with Arg was confirmed to encode DPP11. These results demonstrated that classification of S46 peptidase is enforceable by the S1 essential residues. Bacteroides DPP11 showed a decreased level of activity towards the substrates, especially with P1-position Glu. Findings of 3D structural modeling indicated three potential amino acid substitutions responsible for the reduction, one of which, Asn650Thr substitution, actually recovered the hydrolyzing activity of Leu-Glu-MCA. On the other hand, the gene currently annotated as DPP7 carrying Gly from B. fragilis (BF9343_0130) and Bacteroides ovatus (Bovatus_03382) did not hydrolyze any of the examined substrates. The existence of a phylogenic branch of these putative Bacteroides DPP7 genes classified by the C-terminal conserved region (Ser-Leu) strongly suggests that Bacteroides species expresses a DPP with an unknown property. In conclusion, the genus Bacteroides exceptionally expresses three S46-family members; authentic DPP7, a new subtype of DPP11 with substantially reduced specificity for Glu, and a third group of S46 family members.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2017.10.015DOI Listing

Publication Analysis

Top Keywords

bacteroides
10
third group
8
s46-family members
8
genus bacteroides
8
dpp11
8
amino acid
8
bacteroides species
8
dpp7 genes
8
dpp7
7
gene
6

Similar Publications

Evaluation of variations in predominant gut microbiota members in inflammatory bowel disease using real-time PCR.

Mol Biol Rep

January 2025

Department of Internal Medicine, Faculty of Medicine, Urmia University of Medical Sciences, Imam Khomeini Hospital, Urmia, Iran.

Inflammatory Bowel Disease (IBD) is a persistent ailment that impacts many individuals worldwide. The interaction between the immune system and gut microbiome is thought to influence IBD development. This study aimed to assess some microbiota in IBD patients compared to healthy individuals.

View Article and Find Full Text PDF

The alleviation by wheat and oat dietary fiber alone or combined of T2DM symptoms in / mice.

Food Funct

January 2025

Academy of National Food and Strategic Reserves Administration, Beijing, China.

The effects of wheat and oat dietary fiber (DF) alone or combined on T2DM remain unclear. In this research, / diabetic mice were fed with diets containing 10% insoluble wheat dietary fiber (WDF), 10% insoluble oat dietary fiber (ODF), and 10% WODF (mixture of WDF and ODF, WDF : ODF = 1 : 1) for 8 weeks. The results showed that WDF, ODF, and WODF all reduced the body weight and fasting blood glucose (FBG) and improved oral glucose tolerance in / mice.

View Article and Find Full Text PDF

Ammonia and hydrogen sulfide - new insights into gut microbiota and male infertility through meta-analysis.

Front Cell Infect Microbiol

January 2025

College of Environmental and Life Sciences, Murdoch University, Perth, WA, Australia.

Background: Ammonia (NH) and hydrogen sulfide (HS) are produced during digestion in the human gut, yet the impact of these internally generated gases on male reproduction have received limited attention in scientific research.

Methods: We systematically reviewed 935 scientific publications, spanning from 1947 to 2023, focusing on external or internal NH and/or HS, male infertility, and gut microbiota. Meta-analysis was conducted to evaluate the summary relative risk (RR) and 95% confidence intervals (CIs) of combined studies.

View Article and Find Full Text PDF

Decoding the chicken gastrointestinal microbiome.

BMC Microbiol

January 2025

School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.

Metataxonomic studies have underpinned a vast understanding of microbial communities residing within livestock gastrointestinal tracts, albeit studies have often not been combined to provide a global census. Consequently, in this study we characterised the overall and common 'core' chicken microbiota associated with the gastrointestinal tract (GIT), whilst assessing the effects of GIT site, bird breed, age and geographical location on the GIT resident microbes using metataxonomic data compiled from studies completed across the world. Specifically, bacterial 16S ribosomal DNA sequences from GIT samples associated with various breeds, differing in age, GIT sites (caecum, faeces, ileum and jejunum) and geographical location were obtained from the Sequence Read Archive and analysed using the MGnify pipeline.

View Article and Find Full Text PDF

Fecal occult blood affects intestinal microbial community structure in colorectal cancer.

BMC Microbiol

January 2025

Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China.

Background: Gut microbes have been used to predict CRC risk. Fecal occult blood test (FOBT) has been recommended for population screening of CRC.

Objective: To analyze the effects of fecal occult blood test (FOBT) on gut microbes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!