Pt nanoparticles supported on nitrogen-doped porous graphene for sensitive detection of Tadalafil.

J Colloid Interface Sci

Key Laboratory of Nanobiosensing and Nanobioanalysis at University of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, PR China. Electronic address:

Published: February 2018

Graphene (GR) is one of the most promising candidates for utilization in the electroanalytical field because of its superior electrocatalytic activity, excellent electronic conductivity, and high chemical stability. However, the GR sheets usually tend to stack together with π-π interaction. The spontaneous stacking leads to the aggregation of the GR sheets and imposes a negative feedback in the surface area of the GR, which obviously limits its electrochemical application. In this study, nitrogen-doped porous GR (NPGR) with different pore sizes is prepared by using silica (SiO) as a template. The NPGR exhibits high surface area and porous structure, fulfilling the requirement for supporting materials. Being a support, the structural uniqueness and N dopants of NPGR facilitate the deposition of Pt nanoparticles (Pt NPs). The Pt NPs/NPGR composites integrate the structural properties of NPGR and catalytic properties of Pt NPs. A selective and sensitive electrochemical sensor was successfully developed for sensitive determination of Tadalafil (TAD), showing a concentration range of 1.30-488.9μM and limit of detection of 0.268μM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2017.10.022DOI Listing

Publication Analysis

Top Keywords

nitrogen-doped porous
8
surface area
8
nanoparticles supported
4
supported nitrogen-doped
4
porous graphene
4
graphene sensitive
4
sensitive detection
4
detection tadalafil
4
tadalafil graphene
4
graphene promising
4

Similar Publications

Assembly-foaming synthesis of hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts for efficient oxygen reduction.

J Colloid Interface Sci

January 2025

Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China. Electronic address:

High-performance electrocatalysts are highly concerned in oxygen reduction reaction (ORR) related energy applications. However, facile synthesis of hierarchically porous structures with highly exposed active sites and improved mass transfer is challenging. Herein, we develop a novel assembly-foaming strategy for synthesizing hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) with high activity and efficient atom utilization for oxygen reduction reactions (ORRs) are imperative for rechargeable Zinc-air batteries (ZABs). However, it is still a prominent challenge to construct a noble-metal-free SAC with low cost but high efficiency. Herein, a novel nitrogen-doped graphene (NrGO) based SAC, immobilized with atomically dispersed single cobalt (Co) atoms (Co-NrGO-SAC), is reported for ORRs.

View Article and Find Full Text PDF

Nanozymes with Modulable Inhibition Transfer Pathways for Thiol and Cell Identification.

Anal Chem

January 2025

Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.

The elementary mechanism and site studies of nanozyme-based inhibition reactions are ambiguous and urgently require advanced nanozymes as mediators to elucidate the inhibition effect. To this end, we develop a class of nanozymes featuring single Cu-N catalytic configurations and B-O sites as binding configurations on a porous nitrogen-doped carbon substrate (B/Cu) for inducing modulable inhibition transfer at the atomic level. The full redistribution of electrons across the Cu-N sites, induced by B-O sites incorporation, yields B/Cu with enhanced peroxidase-like activity versus Cu.

View Article and Find Full Text PDF

Preparation of nitrogen-doped biocarbon from sewage sludge and pine sawdust for superior hydrogen sulfide removal: Experimental and DFT studies.

Environ Res

January 2025

Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China. Electronic address:

Hydrogen sulfide (HS) is a major air pollutant posing a serious threat to both the environment and public health. In this study, a novel nitrogen-rich biocarbon that effectively removes HS was produced from a mixture of sewage sludge and pine sawdust using melamine as nitrogen source. Compared with pristine biocarbons, nitrogen (N)-doped biocarbons possessed an adjustable porosity, e.

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!