Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Urban and peri-urban forests are green infrastructures (GI) that play a substantial role in delivering ecosystem services such as the amelioration of air quality by the removal of air pollutants, among which is ozone (O), which is the most harmful pollutant in Mediterranean metropolitan areas. Models may provide a reliable estimate of gas exchanges between vegetation and atmosphere and are thus a powerful tool to quantify and compare O removal in different contexts. The present study modeled the O stomatal uptake at canopy level of an urban and a peri-urban forest in the Metropolitan City of Rome in two different years. Results show different rates of O fluxes between the two forests, due to different exposure to the pollutant, management practice effects on forest structure and functionality, and environmental conditions, namely, different stressors affecting the gas exchange rates of the two GIs. The periodic components of the time series calculated by means of the spectral analysis show that seasonal variation of modeled canopy transpiration is driven by precipitation in peri-urban forests, whereas in the urban forest seasonal variations are driven by vapor pressure deficit of ambient air. Moreover, in the urban forest high water availability during summer months, owing to irrigation practice, leads to an increase in O uptake, thus suggesting that irrigation may enhance air phytoremediation in urban areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-017-0474-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!