An important goal of vaccination against viruses and virus-driven cancers is to elicit cytotoxic CD8 T cells specific for virus-derived peptides. CD8 T cell responses can be enhanced by engaging help from natural killer T (NKT) cells. We have produced synthetic vaccines that induce strong peptide-specific CD8 T cell responses in vivo by incorporating an NKT cell-activating glycolipid. Here we examine the effect of a glycolipid-peptide conjugate vaccine incorporating an NKT cell-activating glycolipid linked to an MHC class I-restricted peptide from a viral antigen in human peripheral blood mononuclear cells. The vaccine induces CD1d-dependent activation of human NKT cells following enzymatic cleavage, activates human dendritic cells in an NKT-cell dependent manner, and generates a pool of activated antigen-specific CD8 T cells with cytotoxic potential. Compared to unconjugated peptide, the vaccine upregulates expression of genes encoding interferon-γ, CD137 and granzyme B. A similar vaccine incorporating a peptide from the clinically-relevant human papilloma virus (HPV) 16 E7 oncoprotein induces cytotoxicity against peptide-expressing targets in vivo, and elicits a better antitumor response in a model of E7-expressing lung cancer than its unconjugated components. Glycolipid-peptide conjugate vaccines may prove useful for the prevention or treatment of viral infections and tumors that express viral antigens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660197 | PMC |
http://dx.doi.org/10.1038/s41598-017-14690-5 | DOI Listing |
ACS Chem Biol
June 2024
Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand.
Eliciting an antihapten antibody response to vaccination typically requires the use of constructs where multiple copies of the hapten are covalently attached to a larger carrier molecule. The carrier is required to elicit T cell help via presentation of peptide epitopes on major histocompatibility complex (MHC) class II molecules; as such, attachment to full-sized proteins, alone or in a complex, is generally used to account for the significant MHC diversity in humans. While such carrier-based vaccines have proven extremely successful, particularly in protecting against bacterial diseases, they can be challenging to manufacture, and repeated use can be compromised by pre-existing immunity against the carrier.
View Article and Find Full Text PDFBackground & Aims: Liver diseases resulting from chronic HBV infection are a significant cause of morbidity and mortality. Vaccines that elicit T-cell responses capable of controlling the virus represent a treatment strategy with potential for long-term effects. Here, we evaluated vaccines that induce the activity of type I natural killer T (NKT) cells to limit viral replication and license stimulation of conventional antiviral T-cells.
View Article and Find Full Text PDFSelf-adjuvanting vaccines consisting of peptide epitopes conjugated to immune adjuvants are a powerful way of generating antigen-specific immune responses. We previously showed that a -derived peptide conjugated to a rearranged form of α-galactosylceramide (α-GalCer) could stimulate liver-resident memory T (T) cells that were effective killers of liver-stage ANKA (Pba)-infected cells. To investigate if similar or even superior T responses can be induced by modifying the α-GalCer adjuvant, we created new conjugate vaccine cadidates by attaching an immunogenic -derived peptide antigen to 6″-substituted α-GalCer analogues.
View Article and Find Full Text PDFSci Immunol
June 2020
Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
Liver resident-memory CD8 T cells (T cells) can kill liver-stage -infected cells and prevent malaria, but simple vaccines for generating this important immune population are lacking. Here, we report the development of a fully synthetic self-adjuvanting glycolipid-peptide conjugate vaccine designed to efficiently induce liver T cells. Upon cleavage in vivo, the glycolipid-peptide conjugate vaccine releases an MHC I-restricted peptide epitope (to stimulate -specific CD8 T cells) and an adjuvant component, the NKT cell agonist α-galactosylceramide (α-GalCer).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!