We previously showed that the glutathione precursor, acetylcysteine (NAC), prevented hypoglycemia-associated autonomic failure (HAAF) and impaired activation of ventromedial hypothalamus (VMH) glucose-inhibited (GI) neurons by low glucose after recurrent hypoglycemia (RH) in nondiabetic rats. However, NAC does not normalize glucose sensing by VMH GI neurons when RH occurs during diabetes. We hypothesized that recruiting the thioredoxin (Trx) antioxidant defense system would prevent HAAF and normalize glucose sensing after RH in diabetes. To test this hypothesis, we overexpressed Trx-1 (cytosolic form of Trx) in the VMH of rats with streptozotocin (STZ)-induced type 1 diabetes. The counterregulatory response (CRR) to hypoglycemia in vivo and the activation of VMH GI neurons in low glucose using membrane potential sensitive dye in vitro was measured before and after RH. VMH Trx-1 overexpression normalized both the CRR and glucose sensing by VMH GI neurons in STZ rats. VMH Trx-1 overexpression also lowered the insulin requirement to prevent severe hyperglycemia in STZ rats. However, like NAC, VMH Trx-1 overexpression did not prevent HAAF or normalize activation of VMH GI neurons by low glucose in STZ rats after RH. We conclude that preventing HAAF in type 1 diabetes may require the recruitment of both antioxidant systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741147 | PMC |
http://dx.doi.org/10.2337/db17-0930 | DOI Listing |
J Neurophysiol
January 2025
Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, IL, USA, 60064.
The medial amygdala (MeA) is activated by social stimuli and manipulations of the MeA disrupt a wide range of social behaviors. Social stress can shift social behaviors and may accomplish this partly via effects on the MeA. However, very little is known about the effects of social stress on the electrophysiological activity of MeA neurons.
View Article and Find Full Text PDFMol Metab
December 2024
Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain. Electronic address:
Objective: AMP-activated protein kinase (AMPK) is a heterotrimer complex consisting of a catalytic α subunit (α1, α2) with a serine/threonine kinase domain, and two regulatory subunits, β (β1, β2) and γ (γ1, γ2, γ3), encoded by different genes. In the hypothalamus, AMPK plays a crucial role in regulating energy balance, including feeding, energy expenditure, peripheral glucose and lipid metabolism. However, most research on hypothalamic AMPK has concentrated on the catalytic subunits AMPKα1 and AMPKα2, with little focus on the regulatory subunits.
View Article and Find Full Text PDFLipids Health Dis
December 2024
Physical Education College, Hebei Normal University, Shijiazhuang, China.
Background: High-intensity interval training (HIT) does not burn fat during exercise. However, it significantly reduces visceral adipose after long-term training. The underlying mechanism may be related to the elevation of fat consumption during the post-exercise recovery period, which is regulated by the hypothalamus-adipose axis.
View Article and Find Full Text PDFEur J Neurosci
December 2024
Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China.
This study aimed to explore the interaction between the expression of neuronal HIF-1α in the mediobasal hypothalamus and food intake, glycolipid metabolism and body weight (BW) in mice consuming high-fat diet (HFD). In HIF-1α mice, AAV-hSyn-GFP (NC group) or AAV-hSyn-cre-GFP (KD group) virus was injected into medial base of the hypothalamus. Frozen brain tissue sections confirmed the presence of the virus within the hypothalamus of mice after 28 days of AAV injection, including reporter signals within the arcuate nucleus, DMH and VMH.
View Article and Find Full Text PDFFront Cell Neurosci
October 2024
Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
The hypothalamus is the primary center of the brain that regulates energy homeostasis. The ventromedial hypothalamus (VMH) plays a central role in maintaining energy balance by regulating food intake, energy expenditure, and glucose levels. However, the cellular and molecular mechanisms underlying its functions are still poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!