Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neuromedin U (NMU) is a neuropeptide that is expressed and secreted in the brain and gut. We previously demonstrated that the intracerebroventricular (i.c.v.) administration of NMU inhibited inflammation-mediated memory impairment in mice. In order to utilize NMU as a clinical treatment tool for inflammation-mediated amnesia, we herein focused on non-invasive intranasal delivery because the i.c.v. administration route is invasive and impractical. In the present study, we prepared two NMU derivatives containing cell-penetrating peptides (CPPs), octaarginine (R8), and each penetration-accelerating sequence, namely FFLIPKG (PASR8-NMU) and FFFFG (F4R8-NMU), for intranasal (i.n.) administration. In the Y-maze test, the i.c.v. administration of lipopolysaccharide (LPS) (10μg/mouse) significantly decreased spontaneous alternation behavior, and this was prevented by the prior administration of PASR8-NMU or F4R8-NMU (5.6μg/mouse, i.n.). Moreover, the administration of PASR8-NMU or F4R8-NMU (5.6μg/mouse, i.n.) just before the Y-maze test also improved LPS-induced memory impairment. Indocyanine green (ICG)-labeled PASR8-NMU (i.n.) was significantly observed in the hippocampus and paraventricular hypothalamic nucleus 30min after its i.n. administration. PASR8-NMU, but not F4R8-NMU guaranteed the stability of the administration liquid for 24h. These results suggest that PASR8-NMU is effective for i.n. delivery to the brain, and may be useful in the clinical treatment of inflammation-mediated amnesia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2017.10.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!