According to the new EU Medical Devices (MDR) legislation coming into effect in 2017, manufactures will have to comply with higher standards of quality and safety for medical devices in order to meet common safety concerns regarding such products. Metal alloys are extensively used in dentistry and medicine (e.g. orthopedic surgery and cardiology) even though clinical experience suggests that many metals are sensitizers. The aim of this study was to further test the applicability domain of the in vitro reconstructed human epidermis (RhE) IL-18 assay developed to identify contact allergens and in doing so: i) determine whether different metal salts, representing leachables from metal alloys used in medical devices, could be correctly labelled and classified; and ii) assess the ability of different salts for the same metal to penetrate the skin stratum corneum. Twenty eight chemicals including 15 metal salts were topically exposed to RhE. Nickel, chrome, gold, palladium were each tested in two different salt forms, and titanium in 4 different salt forms. Metal salts were labelled (YES/NO) as sensitizer if a threshold of more than 5 fold IL18 release was reached. The in vitro estimation of expected sensitization induction level (potency) was assessed by interpolating in vitro EC50 and IL-18 SI2 with LLNA EC3 and human NOEL values from standard reference curves generated using DNCB (extreme) and benzocaine (weak). Metal salts, in contrast to other chemical sensitizers and with the exception of potassium dichromate (VI) and cobalt (II) chloride, were not identified as contact allergens since they only induced a small or no increase in IL-18 production. This finding was not related to a lack of stratum corneum skin penetration since EC50 values (decrease in metabolic activity; MTT assay) were obtained after topical RhE exposure to 8 of the 15 metal salts. For nickel, gold and palladium salts, differences in EC50 values between two salts for the same metal could not be attributed to differences in molarity or valency. For chrome salts the difference in EC50 values may be explained by different valencies (VI vs. III), but not by molarity. In general, metal salts were classified as weaker sensitizers than was indicated from in vivo LLNA EC3 and NOEL data. Our in vitro results show that metals are problematic chemicals to test, in line with the limited number of standardized human and animal studies, which are not currently considered adequate to predict systemic hypersensitivity or autoimmunity, and despite clinical experience, which clearly shows that many metals are indeed a risk to human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2017.10.014 | DOI Listing |
J Trace Elem Med Biol
January 2025
Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland.
Lead is a toxic heavy metal, which accumulates in the soil and is readily absorbed by plant roots. The uptake of toxic elements by crops is a serious threat to human health. For this reason, it is important to prevent the incorporation of heavy metals into the food chain.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia.
In situ measurements of the chemical identity and quantity of anode gases during electrochemical measurements and rare earth (RE) electrolysis from fluoride-based molten salts composed of different kinds of rare earth oxides (REOs) were performed using FTIR spectrometry. Linear sweep voltammetry (LSV) was carried out to characterize oxidation processes and determine the anodic effect from NdF + PrF + LiF + REO melt. RE complex formation and subsequent reactions on the GC anode surface were discussed to understand the formation pathways of CO/CO and perfluorocarbon gases (PFC), mainly CF and CF.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.
Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.
View Article and Find Full Text PDFMater Horiz
January 2025
National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
The stable operation of high-capacity lithium-sulfur batteries (LSBs) has been hampered by slow conversion kinetics of lithium polysulfides (LiPSs) and instability of the lithium metal anodes. Herein, 6-(dibutylamino)-1,3,5-triazine-2,4-thiol (DTD) is introduced as a functional additive for accelerating the kinetics of cathodic conversion and modulating the anode interface. We proposed that a coordination interaction mechanism drives the polysulfide conversion and modulates the Li solvated structure during the binding of the N-active site of DTD to LiPSs and lithium salts.
View Article and Find Full Text PDFWater Res
January 2025
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institution Pollution Control & Ecology Security, Shanghai 200092, China. Electronic address:
Ion selective membranes with precise Mg/Li separation have attracted extensive interest in lithium extraction to circumvent the lithium supply shortage. However, realizing this target remains a significant challenge mainly due to a high concentration ratio of Mg/Li as well as the relatively close ionic hydration radius and chemical. Herein, inspired by the host-guest recognition between alkali-metal ions and crown ether (CE), a novel approach was proposed to regulate the membrane internal structure by introducing CE to strengthen the complexation between Li and CE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!