Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets.

Proc Natl Acad Sci U S A

Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286

Published: November 2017

The cytotoxicity of 2D graphene-based nanomaterials (GBNs) is highly important for engineered applications and environmental health. However, the isotropic orientation of GBNs, most notably graphene oxide (GO), in previous experimental studies obscured the interpretation of cytotoxic contributions of nanosheet edges. Here, we investigate the orientation-dependent interaction of GBNs with bacteria using GO composite films. To produce the films, GO nanosheets are aligned in a magnetic field, immobilized by cross-linking of the surrounding matrix, and exposed on the surface through oxidative etching. Characterization by small-angle X-ray scattering and atomic force microscopy confirms that GO nanosheets align progressively well with increasing magnetic field strength and that the alignment is effectively preserved by cross-linking. When contacted with the model bacterium , GO nanosheets with vertical orientation exhibit enhanced antibacterial activity compared with random and horizontal orientations. Further characterization is performed to explain the enhanced antibacterial activity of the film with vertically aligned GO. Using phospholipid vesicles as a model system, we observe that GO nanosheets induce physical disruption of the lipid bilayer. Additionally, we find substantial GO-induced oxidation of glutathione, a model intracellular antioxidant, paired with limited generation of reactive oxygen species, suggesting that oxidation occurs through a direct electron-transfer mechanism. These physical and chemical mechanisms both require nanosheet penetration of the cell membrane, suggesting that the enhanced antibacterial activity of the film with vertically aligned GO stems from an increased density of edges with a preferential orientation for membrane disruption. The importance of nanosheet penetration for cytotoxicity has direct implications for the design of engineering surfaces using GBNs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699062PMC
http://dx.doi.org/10.1073/pnas.1710996114DOI Listing

Publication Analysis

Top Keywords

enhanced antibacterial
16
antibacterial activity
16
graphene oxide
8
magnetic field
8
activity film
8
film vertically
8
vertically aligned
8
nanosheet penetration
8
nanosheets
5
enhanced
4

Similar Publications

The 2-substituted benzimidazole has emerged as a promising heterocyclic compound in the field of drug design. In pursuit of more sustainable photocatalysts for 2-substituted benzimidazole synthesis, the method for coating FeO with V-doped TiO was presented. On the base of characterizing composition, morphology, and properties, the prepared nano-sized FeO@V/TiO composites were used as a heterogeneous photocatalyst to catalyze the synthesis of 2-substituted benzimidazoles under light.

View Article and Find Full Text PDF

In recent years, antimicrobial peptides (AMPs) have emerged as a potent weapon against the growing threat of antibiotic resistance. Among AMPs, the ones containing tryptophan (W) and arginine (R) exhibit enhanced antimicrobial properties, benefiting from the unique physicochemical features of the two amino acids. Herein, we designed three hexapeptides, including WR, DWR (D-isomer), and RF, derived from the original sequence, RWWRWW-NH2 (RW).

View Article and Find Full Text PDF

Background: The rise of antibiotic-resistant pathogens has intensified the search for novel antimicrobial agents. This study aimed to isolate from local soil samples and evaluate its antimicrobial properties, along with optimizing the production of bioactive compounds.

Methods: Soil samples were collected from local regions, processed, and analysed for Streptomyces strains isolation using morphological characteristics and molecular identification through 16S rRNA gene PCR assay.

View Article and Find Full Text PDF

The antimicrobial properties of silver and silver complexes have been known in medicine since ancient times. However, limitations in stability and solubility have impaired medicinal chemistry and drug development research. With the advent of N-heterocyclic carbenes (NHC) as ligands, the development of synthesis methods for organometallic silver species of the type (NHC)AgX (where X = halide) has brought significant improvements, and the class of antimicrobial silver NHC complexes has emerged.

View Article and Find Full Text PDF

Metal-organic framework (MOF)-bioactive glass (BG) systems for biomedical applications - A review.

Mater Today Bio

February 2025

Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany.

In recent years, metal-organic frameworks (MOFs) have emerged as promising materials for biomedical applications, owing to their superior chemical versatility, unique textural properties and enhanced mechanical properties. However, their fast and uncontrolled degradation, together with the reduced bioactivity have restricted their clinical potential. To overcome these limitations, MOFs can be synergistically combined with other materials, such as bioactive glasses (BGs), known for their bioactivity and therapeutic ion releasing capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!