Pluripotency of embryonic stem cells (ESCs) can be functionally assessed according to the developmental potency. Tetraploid complementation, through which an entire organism is produced from the pluripotent donor cells, is taken as the most stringent test for pluripotency. It remains unclear whether ESCs of other species besides mice can pass this test. Here we show that the rat ESCs derived under 2i (two small molecule inhibitors) conditions at very early passages are able to produce fertile offspring by tetraploid complementation. However, they lose this capacity rapidly during culture due to a nearly complete loss of genomic imprinting. Our findings support that the naïve ground state pluripotency can be captured in rat ESCs but also point to the species-specific differences in its regulation and maintenance, which have implications for the derivation and application of naïve pluripotent stem cells in other species including human.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5692557PMC
http://dx.doi.org/10.1073/pnas.1708710114DOI Listing

Publication Analysis

Top Keywords

stem cells
12
tetraploid complementation
12
embryonic stem
8
produce fertile
8
fertile offspring
8
offspring tetraploid
8
rat escs
8
rat embryonic
4
cells
4
cells produce
4

Similar Publications

Myocardial infarction can lead to the loss of billions of cardiomyocytes, and while cell-based therapies are an option, immature nature of in vitro-generated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) is a roadblock to their development. Existing iPSC differentiation protocols don't go beyond producing fetal iCMs. Recently, adult extracellular matrix (ECM) was shown to retain tissue memory and have some success driving tissue-specific differentiation in unspecified cells in various organ systems.

View Article and Find Full Text PDF

Efficient and Rapid Generation of Neural Stem Cells by Direct Conversion Fibroblasts with Single microRNAs.

Stem Cells

January 2025

Medicine and Pharmacy Research Center, and Yantai Key Laboratory for Stem Cell Biology and Regenerative Medicine, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, China.

Neural stem cells (NSCs) have great potentials in the application of neurodegenerative disease therapy, drug screening, and disease modeling. However, current approaches for induced NSCs (iNSCs) generation from somatic cells are still slow and inefficient. Here we establish a rapid and efficient method of iNSCs generation from human and mouse fibroblasts by single microRNAs (miR-302a).

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!